Лаборатория космических исследований

Ульяновская секция Поволжского отделения Российской Академии Космонавтики им. К. Э. Циолковского

Ульяновский Государственный Университет
Вода в космосе

   

 

 

      Кометы, астероиды, метеориты приносят в Солнечную систему воду из космоса. А в космосе откуда берется вода?

 

 

    Как ни странно, источники воды – звезды. Вода накапливалась в межзвездном пространстве с тех пор, как появились первые звезды, более десяти миллиардов лет, поэтому Н2О старше Солнца, которому всего 4.5 миллиарда.

                                       

 

                                                     Рис. 1

           Межзвездный газ, звезды и Солнце на 75% состоят из водорода, второй по обилию элемент – гелий, а третийкислород, по массе его больше, чем каждого из других химических элементов. Основной поставщик кислорода – звезды «среднего возраста». Как подчеркивает Главный научный сотрудник Геологического института РАН Ю.А. Балашов, для объединения атомов водорода и кислорода в молекулу воды, необходима  высокая температура в тысячи градусов.

          Когда в звездах завершаются ядерные реакции превращения водорода в гелий, ядро звезды сжимается, его температура повышается и включаются новые термоядерные реакции образования кислорода, углерода, азота. Равновесие сил газового давления и гравитации нарушается. Атмосфера такой звезды раздувается и охлаждается, поэтому звезда превращается в красного гиганта.  На этой стадии атмосферы постепенно покидают звезды и рассеиваются в пространстве. У многих  звезд на такой стадии наблюдаются объемные колебания, истечение атмосфер, образование рассеивающихся планетарных туманностей  (рис. 2).

                                                                           Рис. 2

       Поступающие из ядра звезды ионы и атомы кислорода в условиях более низкой температуры атмосферы превращаются в молекулы. Дальше от звезды, где холоднее, молекулы более тугоплавких химических элементов объединяются в пылинки, а водород и кислород покрывают пылинки ледяным слоем (рис. 3). 

                                               Рис. 3

Поэтому не удивительно, что молекулы воды так широко распространены в космосе. После молекулы водорода Ни очень стабильной молекулы СО вода Н2О на третьем месте. Следующий этап жизни воды – на пылинках газопылевых облаков (рис 4).

                                               Рис. 4

   Межзвездные пыль и газ образуют облака различного размера, температуры и плотности. Эти облака заполняют огромные темные холодные пространства  между звездами. В результате быстрого вращения галактик газопылевое вещество опускается к их экваторам, где формируются более плотные диски. Именно в них возникают уплотнения, превращающиеся в зоны звездообразования.

        Наступает следующий этап – вода активно участвует в рождении молодых звезд. В сгустках газопылевых облаков неоднократно обнаруживали воду. Наблюдали воду и в окрестностях очень молодых звезд, еще не освободившихся от окружающего их газопылевого вещества. Вода в виде холодного пара способствует охлаждению протозвезд и их дальнейшему сжатию.

   «Группа американских астрономов из Корнеллского университета нашла в большом молекулярном облаке созвездия Ориона (область активного звездообразования)  самую значительную из известных концентрацию паров воды. За один день это гигантское облако производит из водорода и кислорода такое количество воды, которым можно было бы 60 раз наполнить все моря и океаны земного шара.» (рис. 5)

                                                         Рис. 5

    Воды  в космосе огромное количество, но ее довольно сложно наблюдать по многим причинам. БОльшая часть воды находится в виде льда, которого насчитывается 11 модификаций, в зависимости от давления и температуры изменяется структура кристаллических решеток, а при низких  температурах лед становится аморфным

   Некоторые спектральные линии воды обнаруживаются при космических исследованиях в инфракрасном, субмиллиметровом и ультрафиолетовом диапазонах.

   Спектры воды с Земли наблюдаются в радиодиапазоне (1.35 см) в виде линий поглощения на фоне спектров излучающих источников.

  Большой неожиданностью было обнаружение в некторых областях звездообразования вместо линий поглощения ярких линий излучения молекул ОН и Н2О. Линии были очень узкими, что говорит о кинетической температуре всего в пару десятков градусов Кельвина. С другой стороны, зная расстояние до наблюдаемых объектов, оценили яркостную температуру, которая оказалась  неимоверно высокой: 10^14 – 10^15 К ! Стало ясно, что это излучение не тепловое, а мазерное. Мазеры – лазеры радиодиапазона. Накачка мазеров производится инфракрасным излучением образующихся звезд, которые пока не сжались и не разогрелись. Их размеры – с Солнечную систему, а температура  всего 3-4 тысячи градусов.

   Вода не только участвует в образовании звезд, но и активно влияет на дальнейшую судьбу планетных систем.

   Водород и кислород захватываются звездным ветром и в условиях более низкой, чем в звезде, температуры, порядка тысяч градусов, образуют пар, и в таком виде вода попадает на поверхности планет. Возможность удержания пара (воды) в атмосферах зависит от массы планет и их температуры. Следовательно, вода может существовать и на планетах других звезд.

   Описанные процессы можно наблюдать на примере Солнца и Солнечной системы. На планетах, близких к Солнцу, вода испаряется, на Земле – условия для жидкой воды – наилучшие. Возможно, есть вода и на Марсе, и на  некоторых спутниках планет. Самые далекие планеты состоят из льда с примесью более тяжелых элементов. Периферия бывшего газопылевого блака, из которого возникла Солнечная система, занята астероидами пояса Койпера и кометами области Оорта. ( рис 6)  Эти тела почти полностью состоят из льда, кометы часто попадают во внутренние области Солнечной системы, и, неся замерзшую воду, падают на Солнце.

                                                       Рис. 6

      Наше Солнце не остается в долгу: его солнечный ветер заполняет гелиосферу и выносит массы воды в межзвездное пространство. Ведь на планеты попадает ничтожная часть солнечного ветра. Суммарный угловой диаметр всех планет, видимых с Солнца, не превышает 5-6 минут, а солнечный ветер распространяется  с различной интенсивностью во все стороны на 360 градусов.

     История космической воды продолжается

Вода продолжает хранить загадки. Ведь по своим свойствам вода отличается от закономерностей, свойственных другим веществам.

Одна из статей участника нашего сайта Ingus-а называется Планета Вода.

2/3 поверхности Земли покрыты водой. Поэтому, может быть, логичнее нашу планету было назвать  Вода?