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TIpenmosken HOBBIN METOZ TIOCTPOEHWS TOYHBIX PENIEHUN KOCMOJIOTWH CKAJISPHOTO TIOJIsI, OCHOBAHHBIA Ha
NPEJICTAB/IEHUN JIMHAMUYECKUX ypaBHeHuii itnmreiina—Ppuamana B Buge ypaBuenus IlIpéaunrepa. Drto
LPEJICTABIEHUE I1103BOJIS€T CPABHUBATH PEIIEHUs KBAHTOBO-MEXAHUYECKMX U KocMmoJiormueckux 3agad. C
JPYTO# CTOPOHBI, TOT IIOIXOM TO3BOJISIET WCIOIH30BATh M3BECTHBIE (DOPM-MHBAPUAHTHBIE TPEOOPA30OBAHMUS
ypasuenus llIpénunrepa njsa remepany TOYHBIX KOCMOJIOTUYECKUX penieHuii. B KkauecTse mpuMepa mpuMeHeHU st
JAHHOIO MeTOJa PACCMOTPEHO HCIOJIb30BaHMe IpeobpasoBanmii /lapby B KOCMOJIOIME CO CKAJISPHBIM IIOJIEM.
C apyro#i CTOPOHBI, IIPEJACTABIEHHBIE METOIbI TO3BOIAIOT 0000IINUTE MOy YeHHbIE PElleHus HAa MHOIOIOJIEBbIe

KOCMOJIOTUYECKHNE MOIEJIH.
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We propose a new method of exact solutions construction for scalar field cosmology based on representation of
the Einstein-Friedmann dynamic equations as Schrédinger-like one. This representation allows one to compare
the solutions of quantum-mechanical and cosmological problems. On the other hand, this approach makes it
possible to use the well-known form-invariant transformations of the Schrédinger equation to generate exact
cosmological solutions. As an example of the application of this method, the use of the Darboux transformations
in scalar field cosmology is considered. On the other hand, the presented methods make it possible to generalize
the obtained solutions to multi-field cosmological models.
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Introduction

Investigation of Scalar Field Cosmology (SFC) is closely connected with the development of
inflationary theory started in the beginning of 1980ies with works by Starobinsky, Guth, Linde and
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Albrecht and Steinhard [1-5]. The first analysis of the system of differential equations describing
the dynamics of the Friedmann universe filled with a scalar field was performed using approximation
methods. About ten years after the discovery of the inflationary stage in the evolution of the universe, the
first exact solution attracted attention of many scientists. Since that time a great number of methods for
construction of exact solutions in SFC have been proposed and developed. Many of these are described
in the works [6-21].

The equations of cosmological dynamics themselves in inflationary models with a scalar field in the
flat Friedmann universe are written as follows

H2=:;(§&+Vw0, (1)
o= -5, @
S+3Hp = —V'(¢). (3)

Here a(t) is the scale factor, H(t) = a(t)/a(t) is the Hubble parameter, ¢(t) is a scalar field, and
V(¢) is a potential energy (or simply potential as it traditionally described in inflationary cosmology).
A dot denotes the derivative with respect to the cosmic time ¢, and a prime denotes the derivative with
respect to the scalar field.

It should also be noted that field equation (3) is a consequence of two Einstein-Friedman equations
(1)-(2), which completely determine the dynamics of the early universe at the inflationary stage based
on the General Relativity.

Among the various methods that are used to construct exact solutions of equations (1)—(2), the
method of bringing one of them to the one-dimensional stationary Schrédinger equation was considered.
To our knowledge, the Schrodinger representation of the first Einstein-Friedmann equation (1) was
proposed for the first time by Zhuravlev et al [22]. The method was further developed by A. Yurov with
coauthors in the works [23,24]. Later Barbosa-Cendejas and Reyes [25] repeated the derivation of the
Schrédinger equation from the Friedmann equation, and compared solutions in cosmology and quantum
mechanics. In our recent work [26], another approach was considered, based on the representation of the
first Einstein-Friedman equation as the Schrodinger-like equation in terms of a scalar field.

In this paper, we consider the representation of the second Einstein-Friedman equation (2) in the
form of the Schrodinger-like equation and give examples of known and new exact cosmological solutions
obtained by this method. Also, this approach provides a new way of comparing quantum-mechanical
and cosmological problems, as shown by the example of the Pschl-Teller potential.

Further, we consider the possibility of applying the Darboux transformations within the framework
of the proposed approach. It is shown that one can use these transformations both to generate new
exact solutions from known ones in models with one scalar field, and in multi-field Chiral Cosmological
Models (CCM) [27-32] as well.

Finally, we generalize the representation of both Einstein-Friedman equations as a one-dimensional
stationary Schrodinger-like equation, which allows one to compare the solutions obtained by using any
other methods to this approach.

1. Schrédinger-like representation of second Einstein-Friedmann equation

It is well known that to generate exact solutions of the system (1)—(3) in explicit form, it is sufficient
to find solutions of the second Einstein-Friedman equation (2) only.
Now, we consider the one-dimensional Schrédinger-like equation in terms of the cosmic time

b —u(t)y =0, (4)
where 1) = 1 (t) is a some function of time. After the following function change

u(t) = é — 2H, (5)



IIpumenenune ypapuenus [IIpéauHrepa B KOCMOJIOTUK CO CKAaJIAPHBIM IIOJIEM HA OCHOBE TOYHBIX DeIleHuil 3

Y(t) = p1 exp(p(t)), (6)

where 11 # 0 is the constant, from equation (4) we obtain the second Einstein-Friedmann equation (2)
#* = —2H. (7)

The inverse transformations of the equations (5)—(6) give

(v). (®)

H() = ;(Z—/u(t)dt—k)\), )

where the functions u(t) and v (t) are connected by equation (4).
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Also, from equations (1)—(2) one has the expression for the potential of a scalar field
V(é(t)) = 3H? + H. (10)
Further, we will consider some exact cosmological solutions for some potentials u(t).

1.1. Solutions for ©u = 0

For the case u(t) = 0, from equation (4) we obtain

P(t) = p(ert + e2), (11)

where ¢; and ¢y are constants of integration. From (8)—(9) and (10) one has

bt) = Wn(ert+ ), (12)
Cl>\t+62)\+01
H() = diresra 13
®) 2(c1t + c2) (13)
a(t) = aoe%)‘t(clt—i—cz)lﬂ, (14)
2
_ G2 3GA 5 3o
V(g) = L& Tt +4/\. (15)

These solutions correspond to exponential power-law inflation [7]. For ¢; = 0 we have the de Sitter
solution with ¢ = In(ez) = const, H = % = const and V = 2)? = const as the partial solution.

1.2. Solutions for u = const # 0

For the case u(t) = A = const, from equation (4) we obtain

Y(t) = (cle‘/Zt + cze_ﬁt) , (16)

where ¢; and ¢y are the constants of integration. Now, we note the growing and decaying solutions
P1,2(t) = exp (:I:\/Zt + ¢0> , g = const. (17)

From (8)—(9) and (10) we obtain exact solutions for chaotic inflation [5,19]
o(t) = EVAL+ g, (18)
1
H(t) = 5 (/\ +VA-— At) , (19)
1 At?
alt) = aoexp{2 {()\i\/ﬁ)t2}}, (20)
2 1

V(g) = [/\ £ VA + VA (¢ — qs)} - 54 (21)
The other wave functions derived from the conditions ¢; = ¢y, ¢y = —co don’t lead to physical

inflationary potentials.
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1.3. Solutions for the P&schl-Teller quantum mechanical potential

Now, we consider the following wave function

¥(t) = pq tanh(at), (22)

where « is an arbitrary constant. From equation (4) we obtain the quantum mechanical P6schl-Teller

potential [33]
202
)= ——o—. (23)
cosh”(at)

From (8)—(9) and (10) for A = 0 one has the corresponding cosmological model

¢(t) = In(tanh(at)), (24)
H(t) = «acot(2at), (25)
a(t) = ag[sinh(2at)]*/2, (26)
V(¢) = o®[cosh?(¢) +2]. (27)

Similar solutions for the potential (27) were considered earlier in [11, 13]. Hence, we have a
connection between the cosmological and quantum mechanical problems for the case considered.

1.4. Generalization of inflationary models with polynomial potentials for the small scalar
field

Now, we consider the wave function

¥ (t) = 1 exp {é arcsin [exp (—QACz(t +c1))] } , (28)

where A and C' are arbitrary constants. From equations (4)-(10) we obtain the exact solutions

H(t) = éln [1+ exp (—4AC?*(t +c1))] + B, (29)
B1) = G aresin [exp (~24C%(1 + 1)) (30)
at) = agexp (8(1:,2{8302t+f[1+eXp(—4AC2(t+cl))]}>, (31)
V(¢) = 3(Aln[cosh(Co)]+ B)* —242C* tanh*(Co), (32)

where B is the constant of integration and the function f(&) is defined as

¢ n
10 = [ e (59)

For the small scalar field ¢ < 1 from (32) we obtain the double-well potential

1 4
V(g) = (_2,4]30‘1 + ZAQC‘1 - 3A206) ¢t +
(—24%C* + 3BABC?) ¢* + 3B + O(¢"), (34)

Therefore, for different choices of the constants A, B and C we have the different potentials as the
partial cases. For the case B = %AC’2 we have

V(p) = A2C* ((12 + i) ot + O(¢%), (35)
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For the case B = %AC’2 + 3 A we obtain
V(¢) = 3AC? <202 + ;’) ¢* + 0(¢°), (36)

The case B = f%A and C' =+ ‘/251 corresponds to the potential
V(¢) =3B*+ 0(¢°). (37)

The evolution of the remaining parameters of these models is determined by substitution of the
constants in solutions (29)—(31). Thus, we have new cosmological solutions for known potentials which
are considered in [3-5] with negligible corrections for the small scalar field.

2. Darboux class of exact cosmological solutions

One of the possible form-invariant transformations of the one-dimensional stationary Schrédinger
equation is the Darboux transformations [34-36]. It should be noted that the application of such a
transformations to the first Einstein-Friedmann equation, written in different forms, was discussed in
[23,26]. In this case, we will consider the application of the Darboux transformations to the second
Einstein-Friedman equation to generate new exact cosmological solutions from known ones and for
conversion of exact solutions from the case of single-field models to multi-field Chiral Cosmological
Models (CCM) as well.

2.1. Single field cosmological models

Now, we consider the one-dimensional Schrédinger equation in terms of the cosmic time
b —at)) =0, (33)
where ¢) = ¢(t) is a some function of time. After the following function change
a(t) = ¢ — 2H, (39
b(t) = p2 exp(p(h)), (40

)
)
where s # 0 is the constant, from equation (4) we obtain the second Einstein-Friedmann equation (2)

¢? = —21. (41)

We will consider ¢ and ¢ as a partial solutions of the equations (4) and (38). The connection
between this solutions can be obtained from the Darboux transformations

2
i = u— 20 (/1) 42)
b=v- w{d 0}, (13)
where f(t) is the general solution of the equatlon (4)
—u(t)f = (44)

Therefore, based on these transformations, one can obtain the connection between the exact
solutions of the equation (7) and (41) in the following form

p(t) = Vnlp(t) + x(t)] + o, (45)
A(t) =n | H(E) + § + %X Y (46)

x(t) = In [j ((15 - jﬁ)] , (47)

f-(6-2m) s =0, (48)
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where n, A and ¢ are some constants.

The general solution f = (1) +-4)(2) of the equation (48) can be found on the basis of the expression
for u = ¢ — 2H and known particular solution ¢! (t) = p1 exp(¢(t)). For the case % ((b - %) > 0 one
has a canonical field ¢(t) for n > 0 and phantom one for n < 0. For % (qﬁ — %) < 0 we have a complex
scalar field o(t) in which real and imaginary components depend on the sign of n.

Also, one can define the new potential as
V(p(t)) =3H? + H. (49)

Thus, from known solutions ¢ and H of equation (7) one can obtain the new exact solutions ¢, H and
V from expressions (45)—(49).

2.2. Two field cosmological models

As one can see, the function x(t) can be considered as the additional scalar field. After substituting
the scalar field

p(t) = Vn[8(t) + x()] + @0 (50)

into the Einsten-Friedmann equations (1)—(2) we obtain

~ n . . n .

3H? = §¢2 +nox + §x2 + V(e x), (51)
i n - .. n.

~H= 5(;52 + nex + 5)(2. (52)

After substituting the field (50) into the field equation (3) one has

. o av dv dt
VR + %) + 3VaH(d+X) = - dff) S
_ (VX)) OV X) > 1 53
() o o
. . o ov . oV
(6 + 0+ 0 + 3G+ 2 =~ g VA (54)
O+ X+ 3H($® + X9) + X + XX +3H( + oY) =
__n( 09, 0 X). (55)
Therefore, the field equation (55) can be represented as two ones in the following form
. . ov
¢+3H(¢+X)+X=—%%7 (56)
3G+ )+ = - T8N, (57)

Such a model with dynamic equations (51)—(52) and (56)—(57) containing a mixed kinetic terms was
considered earlier in the paper [37] for n = 1.

Also, we note, that this system has two independent equations only, because the equation (53) and
(56)—(57) can be obtained from equations (51)—-(52).

Thus, based on the transformations (45)—(48) one can generate the exact cosmological solutions for
this system of equations from known ¢ and H following from (7).
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2.3. Multi-field cosmological models

The previous models with mixed kinetic terms is the partial case of the chiral cosmological models
(CCM) with K scalar fields ¢* (¢ = ¢°, @', ¢%..., ') (K = 2) based on the action [27-32]

S = /d4x\/jg BR — %hABau¢Aau¢Bguy - V(@ ) (58)

where the hap = nf, and [ is the unit matrix.
For the CCM with K-fields, in the spatially flat Friedmann—Robertson—Walker metric, from the
action (58), one has the following dynamic equations

3 = Jhapd 0P +V(3), (59
S (60)
hep (P +3HHP) + V.o = 0. (61)

We start from the equation for one scalar field
2

—2F0 — 040 = (éo) (62)

The first way to construct the exact solutions from known ¢° and H? is to represent the field y as the
sum of the other fields y = ¢! + ¢? + ...¢™.
Thus, from the transformations (45)—(48), one has

o(t) = v/n [a»‘)(t) + i ¢ | + const, (63)
B=1
H(t)=n [Ho(t) + § + % (jt Bil ¢B> + A, (64)
N o
Lo-fa(e-4)
f= (=20 r =0, (66)
V(g(t)) =3H> + H, (67)

where one can consider any scalar fields ¥ corresponding to the condition (65).
The second way is to use the Darboux transformation K-times. Each Darboux transformation of
the equation (60) gives one additional field, therefore one has the following equations

K
o(t) =+/n Z [62(t) + ¢t (t)] + const, (68)
o ;

Hit)=n)_ lHA(t) i M N (69)

A=0 f 2

A+1(4) — 1n KA 1A JLA
¢ + (t) _1 |‘MA_"_1 <¢ fA>‘| ) (70)
A (éA - 2HA) FA=o, (71)
V(6(t)) = 302 + . (72)

One can also combine these approaches to construct exact cosmological solutions for multi-field
Chiral Cosmological Models.
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3. Generalized Schrédinger-like representation of cosmological dynamic equations

Now, we combine the method under consideration and the other approach which was considered
earlier in [26]. The basis of this approach is representation of a first Einstein-Friedmann as Schrodinger-
like one with corresponding dynamic equations (1)—(3) in following form [26]

[—ig+Uwﬂww%=& (73)
vi=6|1- S0t v, (74)
¢ = —2uj, (75)

where (¢) = H(¢), therefore, in this case, the Hubble parameter playing role a wave function in
equation (73).

Thus, on the basis of equations (4)-(9) and (73)-(75) we can conclude that for cosmological
inflationary models containing a scalar field and based on Einstein gravity in a flat four-dimensional
Friedmann-Robertson-Walker space-time, the exact solutions of the system of dynamical equations (1)—
(3) obtained by using any methods, can also be obtained based on the Schrodinger-like equation

2
D Uy = o (76)

dx?

for which the case x = ¢, U(z) = U(¢) corresponds to the relations

V=6 |1 2ue)] v, ()
b= -2, H(9) = (o), (78)

and the case z =t, U(x) = u(t) correspond to the relations

1 |d (v
it [ (2) - -
o(t) =In(y(t), V(e(t)) =3H*+H. (80)

It should also be noted that some solutions of equation (76) correspond to different solutions of
equations (77)—(78) and (79)—(80).

Thus, one can investigate the exactly solvable cosmological models on the basis of the Schrédinger-
type equation only with additional relations between the parameters of the models. This approach gives
two alternative ways to connect the quantum mechanical and cosmological problems as well.

We also note, that based on the results presented in [38-43], one can use the proposed approach for
constructing exact solutions for cosmological inflationary models with modified gravity theories, namely,
with Einstein-Gauss-Bonnet gravity and scalar-tensor gravity as well by the functional and parametric
connections between these types of gravity theories and General Relativity in Friedmann universe.

Conclusion

In this paper we considered an application of the Schrédinger-type equation to construction exact
cosmological solutions in inflationary models with scalar field based on General Relativity. The first
step in this analysis was a new representation of the second Einstein-Friedmann equation as a one-
dimensional stationary Schrédinger-type equation. This representation made it possible to obtain exact
cosmological solutions in explicit form. Also, this approach allows us to compare quantum-mechanical
and cosmological problems in a new way.

The second step was to use the Darboux transformations to generate new exact solutions from the
known ones. It was also shown that these transformations allow the transition from models with one
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scalar field to Chiral Cosmological Models with several fields. This approach differs from that proposed
in work [44], in which such a transition was carried out due to the specific choice of the target space
metric.

Finally, we generalized the representation of both Einstein-Friedman equations as the Schrodinger
equation with different conditions for various variables (scalar field or cosmic time). Such a representation
of background dynamics equations (1)—(3) is quite convenient since, on the one hand, any exact solutions
for an unperturbed scalar field can be obtained in the presented way, on the other hand, the evolution
equations of scalar vy and tensor uj cosmological perturbations in linear order of perturbations theory
are also can be written as the Schrodinger-type equations, namely [45,46]

d?vy, , 1d*2
d?uy, , ld%a
d’f]Q + (k - a,d772> Uk = 0, (82)

where z = a¢/H, k is the wave number and 7 = [ dt/a is the conformal time.

Thus, the same task, from a mathematical point of view, corresponds to two different levels of
analysis of cosmological models that leads to the assertion that the whole problem of constructing
models of the early universe with a scalar field on the basis of General Relativity can be reduced to an
analyzing of same type equations (76) and (81)—(82).

The prospect of using an approach based on the application of the Schrédinger equation to the
analysis of cosmological models consists in developing existing and constructing new effective methods
for exact and approximate solutions of this type of equation or developing effective algorithms for
its numerical solutions, which will allow to comprehensively solve the problem of constructing verifiable
models of the early universe corresponding to observational constraints on the parameters of cosmological
perturbations [47]. The development of this approach is the task of our following investigations in this
direction.
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