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Abstract—We present a method of cosmological model classification according to their thermodynamic
properties, on the basis of their energy phase trajectories. It is shown that the basic elements of the
classification are the properties of energy phase trajectories at the beginning and end points of the evolution.
Using the proposed method, we have analyzed some types of cosmological models which are important
subject to the modern views on the evolution of the observed Universe. In particular, we have analyzed
cyclic and quasi-cyclic models used as an element in slow rolling theory.
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1. INTRODUCTION

Refs. [1, 2] studied a two-component cosmologi-
cal model with a spatially flat Friedmann-Robertson-
Walker (FRW) metric and matter in the form of a
scalar field and a perfect fluid with a general-type
variable equation of state p = γ(t)ε. Models of this
kind quite naturally contain the basic features of the
modern experimental data on the Universe evolution
history. In particular, these models almost always
contain primary inflation and secondary accelerated
expansion at the last stage of the evolution. In the
models considered in [1, 2], it was supposed that the
components of matter are always in thermal equilib-
rium. Due to this condition, the equilibrium temper-
ature of the Universe is zero when it is born, then it
rapidly (exponentially) grows at the primary inflation-
ary stage and rapidly falls down after its end. This
is different from the classical viewpoint that the Uni-
verse was born in the Big Bang with infinite tempera-
ture [3]. On the other hand, the models suggested can
also be considered with violated thermal equilibrium,
which widens the opportunities of their application.
However, before performing such studies, it makes
sense to find a general classification of all kinds of
models from a thermodynamic viewpoint. It is this
problem that is solved in the present paper.

We will perform an analysis of a class of models on
the basis of the assumption that the cosmological dy-
namics is governed by the evolution of the scalar field,
determined by its inherent properties, e.g., the quan-
tum ones. Although our study is based on a classical
(non-quantum) approach, the basic properties of the
field, including the quantum ones, may be formally
accounted for using the characteristics of its energy

evolution. This approach has been named in [2] the
scalar field governed models. Here we will also
adhere to this terminology. The aim of this paper is to
construct a method for an analysis and classification
of cosmological models using their thermodynamic
properties, starting with an equation that determines
the evolution of the total energy of the governing
field. This problem is solved in the first part of the
paper. The second part contains an analysis of some
models with properties of interest, which illustrate the
opportunities of the suggested scheme which studies
the models on the basis of energy characteristics of
the matter components and their time evolution.

2. THE “THERMODYNAMIC”
REPRESENTATION

OF THE COSMOLOGICAL DYNAMIC
EQUATIONS

Our starting point will be the standard Einstein
equations for the spatially flat FRW metric with a
self-interacting scalar field and a perfect fluid,

H2 =
κ

3

([
1
2
φ̇2 + V (φ)

]
+ ε

)
, (1)

φ̈ + 3Hφ̇ = − d

dφ
V (φ). (2)

Here, H = Ṙ/R is the Hubble parameter, R is the
scale factor, κ is Einstein’s gravitational constant,
ε is the fluid energy density, and V (φ) is the self-
interaction potential of the scalar field φ. The first
equation is an Einstein equation as such while the
second one is the field equation forφ. This set of equa-
tion is a starting point for themajority of cosmological
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scenarios in the framework of the FRW metric [3].
Since the model contains two matter components,
the field and the fluid, the above equations should be
supplemented with an equation for the fluid pressure
p:

p = −1
κ

(
2
R̈

R
+

Ṙ2

R2

)
− 1

2
φ̇2 + V (φ), (3)

which is, generally speaking, a consequence of the
first two equations. This equation makes it possi-
ble, using rather simple transformations, to bring the
original equations to a more convenient form (see [1,
4]):

P = −W − 1√
3κ

Ẇ√
W + ε

, (4)

p = −ε− 1√
3κ

ε̇√
W + ε

, (5)

R = R0 exp
{√

κ/3
∫ √

W + εdt
}
, (6)

where the total energy W and the effective field pres-
sure P have the standard form

W =
1
2
(φ̇)2 + V (φ), P =

1
2
(φ̇)2 − V (φ). (7)

To analyze the set of equations (4)–(6), it is useful
to introduce the function

U(φ) = φ̇,

which connects the scalar field and fluid parame-
ters [1, 4]:

√
3κU

√
W (φ) + ε = −W ′. (8)

The full set of equations (4)–(6) allows one to cal-
culate the cosmological model dynamics from speci-
fied thermodynamic parameters of the scalar field and
the fluid. Therefore this set of equations may be called
the “thermodynamic” representation of the cosmo-
logical dynamic equations. For the scalar field, the
“thermodynamic” information is the information on
its self-interaction potential V (φ) or on its total en-
ergyW (φ), as has been shown in [4]. Since Eqs. (4)–
(6) contain a time derivative ofW , whereas the func-
tional form ofW (φ) so far cannot be found confidently
enough from some physical considerations, it is more
convenient for the analysis to fix the field properties
by indicating the functional dependence W (t). In [1,
2], as a version for determining the total field energy
evolution an a subsequent calculation of the function
W (φ), an equation was used that has the following
general form:

Ẇ = −Q(W ). (9)

An autonomous nature of this equation means that
the field W evolves by its intrinsic laws, unrelated
to the evolution of other matter components in the
Universe. For examples, such a field can sponta-
neously decay due to its inner quantum processes.
If there is no other matter, the Universe evolution is
determined solely by the decay law of this field which
is a solution to Eq. (9). Choosing different kinds of the
function Q = Q(W ) in this equation, one can obtain
different models characterizing the basic properties of
the whole Universe dynamics. If there are other forms
of matter in the Universe, there should be energy
exchange between the field and these other forms of
matter, which should lead to a thermal equilibrium
between them [1]. In this case, due to the autonomous
nature of (9), the Universe dynamics will also be de-
termined solely by the field evolution law W = W (t).
Therefore such an approach was named in [2] the
“field governed models.”

The properties of the second matter component,
the perfect fluid, will be described, by analogy with [1,
2], by an equation of state of the following form:

p = γ(t)ε. (10)

As shown in [1, 2], this form of the equation of state
makes it possible to describe the changing percentage
of separate perfect fluid components in their common
mixture, each of them creating its own partial pres-
sure.

3. THE THERMODYNAMIC INTEGRALS
OF MOTION

To complete the thermodynamic description of the
cosmological dynamics based on Eqs. (4)–(6), it is
necessary to supplement them with relations describ-
ing the evolution of matter temperature. To this
end, using the second law of thermodynamics for
reversible processes, we obtain the general relation

ε = −p + T
∂p

∂T
, (11)

where T is the fluid temperature. Then we obtain
the following expression for the fluid entropy density,
in which the equation of state (10) has already been
taken into account:

σ =
ε + p

T
= (1 + γ)

ε

T
. (12)

Using the equations of motion, the latter equation is
brought to the form of the following conservation law:

R3(1 + γ)
ε

T
≡ R3σ = s0 = const. (13)

Here, s0 > 0 is the entropy of a comoving fluid vol-
ume. We will call this well-known relation the first
thermodynamic integral of motion. Unifying this
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relation with (5), we arrive at its useful modification
which looks as follows:

T = −R3

s0

ε̇√
3κ

√
W + ε

, (14)

The second integral of motion is obtained in a
similar form if one formally introduces the “effective
temperature” of the field Θ and the field entropy den-
sity S with the aid of the two relations

W = −P + Θ
∂P
∂Θ

, ΘdS = dW + PdV. (15)

In this case, the second thermodynamic integral of
motion can be written as follows:

R3S = S0 = const. (16)

This law implies an expression for Θ similar to (14):

Θ = − 1
S0

R3 Ẇ√
3æ

√
W + ε

. (17)

Here S0 is the the conserved thermodynamic entropy
of the field φ in a comoving volume.

The parameter Θ, under the condition Θ > 0, pro-
vided by the two conditions S0 > 0 and Ẇ < 0, may
be considered as a certain effective field temperature,
which is connected in a natural way with some “ef-
fective equilibrium thermodynamics” of the field by
the relations (15). It is therefore natural to consider
the question of a thermodynamic equilibrium between
the components in each elementary spatial volume,
which is equivalent to the condition

T = Θ. (18)

This relation immediately leads to

Ẇ

S0
=

ε̇

s0
,

or

ε =
s0

S0
W + ε0. (19)

Let us notice that, in a functional sense, a violation of
the thermodynamic equilibrium condition (18) in the
form

Θ = ηT,

where 0 < η < 1 is a constant, changes actually not-
ing. Introduction of such a parameter is equivalent to
changing the relation q = s0/S0, which is equivalent
to somemodel in equilibriumbut at other values of the
conserved entropies. Changes in the model dynam-
ics will only appear if the parameter η is essentially
time-dependent. However, this kind of violation of
the thermodynamic equilibrium should be necessar-
ily considered in the framework of inhomogeneous
cosmological models, which may be of interest for

perturbation theory, for example, in the epochs of
phase transitions like the recombination epoch.

To complete the general description of the thermo-
dynamics of models under consideration, we present
an expression for the parameter γ(t):

δ = γ + 1 = − 1√
3κ

ε̇

ε
√
W + ε

= − q√
3κ(qW + ε0)

Ẇ√
(q + 1)W + ε0

. (20)

Here q = s0/S0.

4. THE ENERGY PHASE PLANE (W,−Ẇ )

The whole set of relations for the “thermody-
namic” description of the field-governed Universe
evolution now makes it possible to formulate a suf-
ficiently full classification of all possible models on the
basis of studying the single equation (9). It is con-
nected with the fact that most of the known spatially
flat cosmological models may be reduced in one or
another way to a choice of the function Q(W ). The
simplicity and autonomous nature of Eq. (9) allows
for analyzing the properties of phase trajectories of
this equation on the (W,Q) plane and connecting
them with the nature of the cosmological dynamics,
i.e., the changes of the scale factor R = R(t) and
the temperature T = T (t). A useful parameter in
the analysis of various models with the aid of phase
trajectories is the full evolution time between given
points on the phase plane. This quantity is determined
from Eq. (9) itself and has the form

T = −
W1∫

W0

dW

Q(W )
. (21)

An infinite evolution time is obtained in two situa-
tions:

1)Q(W0) = 0, or Q(W1) = 0;

2)W0 = ∞.

To begin with, consider the case that there is only
one matter component. For certainty, let us suppose
that this component is the field. Then, on the basis
of the general properties of trajectories on the phase
plane, one can state that all admissible trajectories
of cosmological dynamics on the (W,Q) plane can
begin at any point P0(W0, Q0) of its first quarter
and end at a point with P1(W1, Q1) with coordinates
satisfying the condition

0 ≤ W1 ≤ W0.
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Fig. 1. Admissible energy phase trajectories of cosmo-
logical models. Models 1 and 2 are those with suddenly
terminated evolution, 3 is a Friedmann model, 4 is an
asymptotically de Sitter model, 5 and 6 are de Sitter
models; a, b, c, d are stationary points of Eq. (9).

This follows from the thermodynamic requirements:
Θ ≥ 0, S0 > 0, W ≥ 0, Ẇ ≤ 0, and the domi-
nant energy condition for the model. For the one-
dimensional dynamic system (9), only stationary
points Ẇ |P = 0, situated at the abscissa axis Q = 0,
can be attractors.

Formally, the trajectories may terminate on the
ordinate axis W = 0 of this plane. Such points are,
however, connected with a singular behavior of solu-
tions to Eq. (9). Such an example is the model with
Q(W ) = Q0 = const, whose trajectory is depicted in
Fig. 1 and denoted by 1. For such a model, W =
W0 −Q0t on the finite segment 0 < t < W0/Q0. Af-
ter its substitution to Eq. (6) we obtain

R(t) = R0 exp
{
− k
(
W0 −Q0t

)3/2}
.

For such models, a solution only exists in finite time
intervals and cannot be continued beyond the time
instant at which the ordinate axis is reached, certainly
except for the point (0, 0) which can be an attractor.
Models similar to this one (in Fig. 1, the trajectory
of one of them is denoted by the digit 2) are hardly
of interest from the viewpoint of cosmological dy-
namics. Finiteness of the Universe existence time,
without an opportunity to continue it beyond a finite
time interval, within which solutions of (9) are cor-
rectly defined, is an irremovable shortcoming of such
models. We will call them models with a suddenly
terminated evolution. Therefore it remains reasonable

to analyze only models whose trajectories tend to one
of the attractors on the positive part of the Q = 0, in
particular, as t → ∞.

Of interest is also a time-reversed analysis of the
attractors, i.e., an analysis of the repellers as t → 0 or
t → −∞. It is an asymptotic analysis of the starting
points of the Universe evolution. Changing t for −t
in Eq. (9), we obtain that, in this limit, points located
on the axis Q = 0 can also be attractors. However,
unlike the case of t → ∞, among the attractors in
the reversed time limit can be an infinitely remote
point in the first quarter of the phase plane. Therefore
the phase trajectories of admissible models can begin
either at an infinitely remote point in the first quarter
or on the axisQ = 0 and terminate on the axis Q = 0
only.

In principle, when analyzing the system trajec-
tories on the energy phase plane, such trajectories
are admitted whose part lies in the quarter of the
phase plane where Ẇ > 0, W > 0. Such trajectories
do not contradict any of the dynamic equations but
they contradict the condition T > 0 in the case of
a thermodynamic equilibrium between the field and
fluid fluctuations. This follows from the relation (14)
that determines the fluid temperature. In the case
of thermal equilibrium, the sign of ε̇ coincides with
the sign of Ẇ , which leads in the domain Ẇ > 0
to negative fluid temperatures. Let us note that a
negative value of Θ can be in principle justified by the
fact that this quantity has been obtained from formal
relations and is only connected with the conservation
law of the quantity S0. However, the fluid temperature
is a fundamentally positive quantity. Therefore one
can assume that if models with parts of a trajectory
having Ẇ > 0 are possible for the field, then, as the
point Ẇ = 0 is approached, the thermodynamic equi-
librium in the systemmust be violated. Consequently,
the model should contain some indications of the
nature of thermodynamic equilibrium violation, which
should provide the validity of the condition T > 0.

The basic dynamic properties of the phase tra-
jectories are related to the physical properties of the
cosmological models. Above all, it is easy to establish
the meaning of stationary points of Eq. (9) forW > 0
(the points b, c, d in Fig. 1). First, the stationary
points themselves represent cosmologies with a fixed
matter density value, invariable in time (models 5 and
6 in Fig. 1, corresponding to the stationary points c
and d). This property is inherent to de Sitter models
with an exponential expansion of the Universe, un-
derlying the inflationary models. Second, the models
whose trajectories asymptotically approach station-
ary points with W > 0, possess an asymptotically de
Sitter behavior, i.e., they will expand asymptotically
exponentially if the trajectory slope at such a point
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is nonzero. The form of the function Q(W ) near a
stationary pointW = W1 can be presented as follows:

Q(W ) ∼ k(W1 −W )α,
W → W1, t → ∞. (22)

If the slope is zero, i.e., α ≥ 1, then the asymptotic
expansion will have other characteristics, which have
been considered in [1] and [2]. For 1 < α < 3/2,
the asymptotic expansion will be accelerated, while
α ≥ 3/2 it will be decelerated. In both cases, from
any point of the trajectory, the stationary point will
be reached in infinite time. An exponential expansion
corresponds toα = 1. Such amodel has been consid-
ered in [2]. Lastly, if the slope of the trajectory at the
stationary point is equal to 90◦, which corresponds
in (23) to the condition 0 < α < 1, then, from any
point of the trajectory which is not infinitely remote
and does not lie on the abscissa axis, this point is
reached in finite time. For such models, the Universe
expansion will be hyper-inflationary, i.e., the Universe
expands to infinity in finite time. Another type of
such models are cyclic or quasi-cyclic models. Their
trajectories are continued to the lower quarter of the
semi=plane W > 0, where motion is possible only
from left to right. Such models will be considered
below.

Similarly to the asymptotic behavior as t → ∞,
one considers the reversed-time behavior:

Q(W ) ∼ k(W −W0)β , W → W0. (23)

In this case, there are two variants of different nature.
Let us denote by T0 the time for which the Universe,
starting from an initial state with the energy W0,
reaches a state with an energy w < W1, smaller than
the energy of the evolution end point. This quantity
can be calculated using the relation

T0(W ) =

∣∣∣∣∣∣ lim
z→W0

w∫
z

dW

Q(W )

∣∣∣∣∣∣ . (24)

The first variant of the evolution corresponds to a
situation with T0(W ) < ∞ and the second one to
T0(W ) = ∞. In the first case, a cosmological sin-
gularity always lies at a finite time interval from any
observation instant, and at infinite time in the second
case. As in the analysis of reaching the evolution
end point W1, the time T0(W ) will be finite, which
corresponds to a finite existence time of the Universe
under the condition 0 < β < 1. In particular, such a
situation corresponds to cyclic or quasi-cyclic mod-
els.

5. A MODEL WITH FINITE ENERGY
DENSITY AND INFINITE EVOLUTION TIME
Among models with admissible energy trajecto-

ries, distinguished are models whose starting point is
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Fig. 2. Trajectory of the system (25).

located on the abscissa axis, as well as their end point.
This means that the energy density in the Universe
is finite at its starting instant. An example of such a
model is the one whose phase trajectory is specified
by the relations

Ẇ = − k

W0 −W1
(W0 −W )(W −W1),

W =
W0 −W1

1 + gekt
+ W1, (25)

and is presented in Fig. 2.

Since the slopes of the trajectory at its starting
and end points are finite, these points are reached
in infinite times. As t → −∞, the energy density
of the system is equal to W0 while as t → ∞, it is
W1 < W0. The evolution of the parameter γ(t) and
the temperature T (t) are presented in Figs. 3a and 3b
for some values of the parameter k that specifies the
velocity of motion along the trajectory.

The most significant feature of this type of models
is the impossibility to show a point in the past where
the radius of the Universe had been zero. Let, for
example, R(t0) = R0 > 0. Then formally, as t →
−∞, R(t) → 0. It is, however, impossible to sat-
isfy the explicit condition that lim

t→−∞
R(t) = 0. From

a mathematical viewpoint, the point t = −∞ is a
limiting point of the range of R(t). Therefore such
models can be called models with an inaccessible
cosmological singularity.

6. CYCLIC MODELS

Onemore interesting class of models for which the
starting and end points of the trajectory lie on the axis
Ẇ = 0, are those whose trajectory makes an angle of
90◦ with the abscissa axis at the beginning and end.

GRAVITATIONAND COSMOLOGY Vol. 17 No. 2 2011



106 ZHURAVLEV et al.
 

–0.4 –0.2 0.2 0.4 0.6

 

t

 

(a)

0.2

0.4

 
γ

 
(

 
t

 
)

–0.8

–1.0

–0.2

–0.4

–0.6

 

1

2

0

3

4
5

 

(b)
1.2

1.0

0.8

0.6

0.2

0.4

 

T

 

(

 

t

 

)

–0.2 0.20 0.4 0.6 1.00.8

 

t

0
1

2

4

3

5

Fig. 3. The parameter γ(t) (a) and the temperature T (b) for the model (25) at different values of the parameter k: 0—k = 1;
1—k = 5; 2—k = 10; 3—k = 15; 4—k = 20; 5—k = 25.
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(b)) for the model (25). The numbering of curves in (a) is the same as in Fig. 3.

This means that, at the initial instant t0 and the final
instant t1, one has

|dQ(W )/dW |t=t0 = |dQ(W )/dW |t=t1 = ∞.

In this case, the time of reaching the starting and
end points is finite, and such models admit a smooth
extension to the domain of positive values of Ẇ .
It means that such trajectories may be of cyclic or
quasi-cyclic nature. An example of such a behavior
is the model whose energy trajectory is given by the

equation

Q(W ) = ω
√

W 2
1 − (W −W0)2. (26)

This equation is easily solved, leading to the following
evolution laws for the field energy density W (t) and
its derivative Ẇ :

W (t) = W0 −W1 sin(ωt),

Ẇ = −W1ω cos(ωt). (27)
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Fig. 5. Phase energy trajectories of cyclic (a) and quasi-cyclic (b) models.
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Fig. 6. Evolution of the scale factor R(t) in cyclic (a) and quasi-cyclic (b) models for different values of the parameter ε0:
1—ε0 = 0.1, 2—ε0 = 0.5, 3—ε0 = 1, 4—ε0 = 2, 5—ε0 = 4.

As is seen from these relations, the energy changes
periodically with the frequency ω, reaching in finite
time its maximum (W0) and minimum (W1) values.
The energy phase trajectory of this system is pre-
sented in Fig. 5a.

A model closely related to this one is another one
in which the energy evolution law is given by

W (t) = W0 −W1e
−λt sin(ωt),

Ẇ = −W1ωe
−λt cos(ωt) + W1λe

−λt sin(ωt). (28)

The phase energy trajectory of such a model is pre-
sented in Fig. 5b. A model of this kind is a standard

way to interpret the behavior of the Universe in the
framework of slow-rolling models [3]. In slow-rolling
models it is supposed that, after exit from the primary
inflation, the field self-interaction potential tends to
its minimum and performs decaying oscillations near
it. It is this kind of behavior that corresponds to the
model (28). Fig. 6 shows the behavior of the scale
factor for cyclic models (27) and (28) in an interval of
the order of two periods of the main frequency.

In both cases the plotted scale factors are mono-
tonically growing functions, almost without differ-
ence from each other. Fig. 7 shows plots of the pa-
rameter γ(t) for both types of models. As has already
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been pointed out, the models whose trajectories have
segments with Ẇ > 0, lead to negative fluid temper-
atures, although it looks admissible from a dynamic
viewpoint.

Fig. 8 plots the temperature evolution in both
cyclic and quasi-cyclic models. The plots are pre-
sented for a time interval from the beginning of the
evolution to the point where the trajectory on the
energy phase plane intersects the abscissa axis. It is
done, as has been already discussed, because in such
a model the temperature becomes negative after the

phase curve intersects the axis Ẇ = 0. It indicates a
thermal equilibrium violation near such points. The
effective temperature of the field becomes negative
while that of the fluid must remain non-negative.

7. CONCLUSION

We have constructed a cosmological model clas-
sification method on the basic of their energy phase
curves. The method allows one, on a qualitative level,
to determine the basic characteristics of models from
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the properties of their energy phase trajectories at the
beginning and end points of the Universe evolution.
Such characteristics are the positions of starting and
end points as well as the slope of phase trajectories
with respect to the axis Ẇ = 0. The latter parameter
determines the total evolution time of the Universe.
As examples, we have analyzed some sufficiently ex-
traordinary models and showed their features that can
be established directly from the properties of the phase
trajectories at their starting and end points. In partic-
ular, for cyclic models with two matter components,
the field and the fluid, it has been shown that near
the point where the phase trajectory crosses the axis
Ẇ = 0, a thermal equilibrium between the fluid and
field fluctuations should be violated. Using the sug-
gested approach, one can build cosmological models
with prescribed thermodynamic and asymptotic prop-
erties. Although this paper considered only models

with a thermodynamic equilibrium between the field
and fluid components, the approach is also suitable
for building models with violated thermal equilibrium.
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