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Abstract—The paper presents a theory giving a unified geometric description of space and matter on the
basis of a new concept related to general relativity (GR). The theory is built on the basis of a critical analysis
of GR. The principle of materiality of space is introduced. The description of matter is based on the idea
of space as a three-dimensional material hypersurface embedded in a four-dimensional Euclidean space.
Matter particles are associated with extended areas of the material hypersurface, and their properties, such
as charge and mass, with topological and geometric properties of this hypersurface. The central place in
the mathematical apparatus for describing the material hypersurface itself and matter particles is played
by marker fields, which are similar in essence to hydrodynamic markers used in classical hydrodynamics.
Based on the theory of marker fields, questions of the topological structure of particles and connection
between the electric charge and the topology of a material hypersurface are discussed. The mass of particles
is represented as a property of the material hypersurface itself and has the meaning of gravitational and
inertial mass at the same time. The fields, gravitational and electromagnetic, are properties of the material
hypersurface geometry expressed in terms of marker fields. To describe the dynamics of particles, the
geometric principle of averaging is introduced, which, as a result, leads to the equations of Newtonian
mechanics and quantum theory.
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1. INTRODUCTION

The problems to be discussed in this paper are re-
lated to the fundamental concepts of modern physics:
mass, electric charge and their connection with the
structure of physical space as a material object. The
approach to the description of space as a material
object in the form of a 3D smooth hypersurface em-
bedded in enclosing 4D Euclidean space is presented
in the papers [1–9].

In [8, 9], the principle of the materiality of space
was formulated as an alternative to the general ap-
proach of special (SR) and general (GR) relativity.
The need to adopt the principle of the materiality of
space was justified in these papers by the fact that the
space-time of SR and GR, being an immaterial ob-
ject, is nevertheless endowed with physical properties
measurable in the experiment. In SR, these are the
properties of changing the length scale and the clock
rate at transitions from one inertial reference frame
to another. In GR, these are additional properties
of space-time curvature that determine the properties
of the gravitational field. As a result, contradictions
and paradoxes appear in the physical theories, for
example, the twin paradox in SR and the gravitational
field energy problem in GR.
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The earlier papers [1–7] discussed a new approach
to the description of electric charge, mass and the
related fields, the electromagnetic and gravitational
ones, as well as quantum theory. The basic approach
to the description of all these physical concepts was
the representation of space as a 3D hypersurface V3

in enclosing 4D Euclidean space W4. The shape of
this hypersurface is determined by the height function
F(x, t) according to the equation

w = F(x, t), (1)

where x = (x1, x2, x3) and w are Cartesian coordi-
nates in W4, connected with the distinguished hyper-
surface P3 ∈ W4 and the direction orthogonal to it,
respectively. The materiality of the hypersurface V3 is
described in this approach by introduction of markers
for points of this hypersurface, which are analogous
to markers used in hydrodynamics. As explained in
[8, 9], markers are the simplest and most natural way
of tracking material objects of almost any type. The
present paper proposes an updated presentation of
the theory which was earlier called the Topological
theory of fundamental fields (TTFP).

We will begin the description of the new approach
with the statement of the materiality principle for
physical objects, which was formulated in [8, 9], with
application of this physical principle to physical space.
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Next, the general approach will be considered, the
theory of marker fields, which seems to be the most
adequate way to describe material objects of any na-
ture. The theory of marker fields for describing ma-
terial space in the form of a hypersurface in W4 was
also considered in general terms in [8, 9]. It should be
noted that the marker theory is one of the standard
ways to describe hydrodynamic flows of gases and
fluids. What is new in the proposed theory is the
use of marker theory to describe gravitational and
electromagnetic fields [1–9].

We will begin with using marker fields to describe
the flows of gas and dust in their own gravitational
field, which is the main object of research in the prob-
lems of astrophysics. It will be shown how such an
approach is transferred to the problems of describing
the very structure of space and the particles of matter
that we perceive as elementary particles. Such parti-
cles obey the laws of quantum physics, which is also
not free from difficulties with a rational interpretation
of its conclusions (see, e.g., [10]). Therefore, in the
article we will briefly focus on how the marker theory
allows us to rationally explain the basic ideas under-
lying quantum theory, without resorting to postulates
on the impossibility of understanding the microcosm
with the help of our experience of living in the macro-
cosm of classical mechanics.

2. THE MATERIALITY PRINCIPLE
FOR PHYSICAL OBJECTS

The necessity to introduce, in modern physical
theory, the seemingly obvious the materiality prin-
ciple for physical objects studied with the help
of instruments in physical experiments, has become
urgent due to the difficulties experienced by all basic
physical concepts—SR, GR, and quantum theory.
This principle is formulated as follows: Any object
that can be detected by physical devices and has
properties detected in a physical experiment must
be a material object, i.e., it must possess the
fundamental properties of matter—mass and en-
ergy.

The existence of difficulties in SR, GR, and quan-
tum theory has been discussed throughout the XX
century by many authors, see, for example, the pa-
pers by Fock [11], Brulluin [12] on SR and GR, and
Sudbury’s paper [10] on a strict formulation of the
postulates of quantum theory. An analysis of these
difficulties [8, 9] indicates that the main source of
problems of modern physical theories is violation of
the materiality principle for physical objects while de-
scribing the structure and dynamics of the main ob-
ject of SR and GR, the Einstein space-time. Space-
time itself in SR and GR is an immaterial object, just
like space in classical mechanics.

In classical mechanics, a measurement of dis-
tances is possible only between individual material
bodies or their parts. The general idea of three-
dimensional space in experiment and theory arises
as a cumulative mathematical model that adequately
combines the entire set of distances between material
objects obtained as a result of experiments. The same
situation is transferred to space-time in SR and then
GR, in which space is necessarily combined with
time. Unlike classical mechanics, in which space and
time are absolute and devoid of any physical proper-
ties, except for the actual length and duration, space-
time in SR and GR is endowed with peculiar physical
properties. In SR, it is the change in length and
time scales at a transition from one reference frame
to another, which are detected in the experiment, and
with the help of which a number of actually observed
physical phenomena are explained.

In GR space-time is additionally endowed with
the property of curvature that serves to explain such
a phenomenon as gravity. Einstein’s idea that the
very properties of space-time determine the phenom-
ena that we call the gravitational field seems to be
one of the most important ideas in physics of the
20th century. A. Einstein gave a concrete physical
meaning to guesses of the 19-th-century scientists
Lobachevsky, Gauss and Clifford, that the properties
of non-Euclidean space can explain many phenom-
ena in the observable world, up to the geometric
essence of matter itself, as proposed in general terms
by Clifford [13]. Without this idea, it is difficult to un-
derstand what are gravitational and electromagnetic
fields are. When we observe the orbital motion of
planets around the Sun or the Moon around Earth,
we do not see any specific substance that causes the
planets to move, deviating from uniform and rectilin-
ear motion.

Similar questions may be addressed to the elect-
romagnetic field as well. The fields have no color,
taste, or flavor. If we assume that the fields are
properties of space itself, then all problems disappear
by themselves. However, at the same time, another
problem arises, the problem of materiality of space
itself.

This problem consists in the fact that by endow-
ing an immaterial object with physical properties, we
refuse to specify a physical mechanism that is respon-
sible for a particular physical phenomenon. This leads
to various paradoxes. The essence of such inadequacy
of the theory was explained by the example of the
twin paradox and the effects associated with atmo-
spheric muons in [8, 9]. From a mathematical point
of view, SR and GR look absolutely perfect. Never-
theless, mathematics itself often points out contra-
dictions when trying to link immaterial objects with
real physical processes. For example, such a situation
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occurs in GR when trying to determine the energy of
the gravitational field, described by the properties of
non-Euclidean pseudo-Riemannian space-time. The
inability to attribute any specific energy to the gravi-
tational field in the form of Einstein space-time makes
it impossible to construct a quantum theory of gravity.

Mathematically, this problem reduces to the fact
that the analogue of the energy-momentum tensor
for a gravitational field is not a tensor. It is this
fact that leads to the problem with the energy of the
gravitational field from a mathematical point of view.

The principle of materiality of space excludes the
occurrence of such problems. At the same time, it
does not give direct indications of how one should
construct a theory of space and time which would
describe the whole set of physical phenomena. To
overcome this difficulty, we will use, as already noted
in the introduction, the theory of markers and marker
fields.

3. CLASSICAL FORCE FIELDS
AND MARKER FIELDS

A typical problem that occurs in astrophysics
when describing various evolving structures and ob-
jects, such as stars or galaxies, is the problem of de-
scribing gas and dust flows in their own gravitational
field. In all problems not related to superdense ob-
jects, such as neutron stars, black holes and quasars,
GR effects are usually neglected, i.e., the space
is considered as a 3D absolute space of classical
mechanics with an independent uniform time flow at
all points of space. In most of these tasks, SR effects
are also neglected since, for most of these objects, the
velocity of dust and gas flows is much less than the
speed of light. A basis for describing the medium itself
in such problems is a model of a continuous medium,
i.e., a medium consisting of material points having
the shape of geometric points endowed with physical
properties—mass and possibly electric charge, if a
plasma is concerned. In reality, these material points
mean atoms, and in some problems of galactic and
cosmological dynamics, individual stars.

To describe a self-gravitating medium consisting
of material points, two approaches can be used, the
Lagrange and Euler ones. In the Lagrangian ap-
proach, the material points of the medium are fixed
using various markers, for example, marking them
with the coordinates they had at the initial time in-
stant. In this case, the Newtonian equations of mo-
tion are written for each particle separately. However,
the Eulerian approach is more often used, it consists
in writing equations for each material point that ap-
pears at a selected point in space at fixed time. The

system of Euler equations describing a flow of gas and
dust in its own gravitational field, has the form

ut + (u,∇)u = − 1

ρm
∇p−∇φ, (2)

ρm,t + div (ρmu) = 0, (3)

Δφ = 4πGρ. (4)

Here, u = (u1, u2, u2) is the vector field of medium
flow velocity, ρm(x, t) is its mass density, φ(x, t) is
the gravitational field potential, p(x, t) is the pres-
sure, G is Newton’s gravitational constant. The first
equation, (2), is the Euler equation of continuum
dynamics. Equation (3) is the mass conservation
equation, and (4) is the Poisson equation for the grav-
itational potential. To close this set of equations, it i
necessary to add an equation of state of this medium,
and possibly a heat conduction equation.

Meanwhile, in Euler’s approach, it is also possible
to pass on to the description of medium dynamics
using marker fields. Markers are fields whose values
do not change along the current lines. Let ea(x, t),
a = 1, 2, 3 be a set of marker fields. Then, by defini-
tion, these fields satisfy the marker transfer equations

dea

dt
=

∂ea

∂t
+ (u,∇)ea = 0, a = 1, 2, 3. (5)

This approach is widely used in astrophysical prob-
lems when dealing with spherically symmetric flows.
In this case, a marker is the mass function M =
4π

∫ r
0 ρr2dr, the amount of mass contained inside a

ball of radius r (see, e.g., [14]).

The most important point in this approach for
further generalizations is that the gravitational field
strength turns out to be closely related to the marker
fields, which has served as the basis for the develop-
ment of the TTFP theory describing matter as such
in the form of elements of space topology and geom-
etry. Moreover, all main dynamic parameters of the
medium, the velocity field and the density, can also be
expressed exclusively in terms of the marker fields. In
particular, from the marker transfer equations (5), au-
tomatically follows a connection between the marker
fields and the velocity field of the medium:

uα = −∂ea

∂t

∂xα

∂ea
. (6)

Using the marker transfer equations (5), one can
obtain a general representtaion of the density that
automatically satisfies the mass conservation equa-
tion (3). Differentiating (5) in the coordinates, we
arrive at the relation

∂

∂t

∂ea

∂xα
+

∂

∂xα

(

uβ
∂ea

∂xβ

)

= 0.
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Multiplying this relation by the derivatives ∂xα/∂ea

and contracting the result over the indices α and a,
we arrive at the equation

∂|J |
∂t

+
∂

∂xα

(
|J |uα

)
= 0, (7)

where J is the Jacobian of the transformation
ea → xα:

J = det

(
∂ea

∂xα

)

. (8)

Comparing (3) and (7), we conclude that, from a for-
mal viewpoint, the density ρ can be identified with |J |.
In a more general interpretation, a relation between ρ
and |J | may have the form

ρm = m0M(e)|J |, (9)

where M(e) is an arbitrary sufficiently smooth func-
tion of the marker fields: e = (e1, e2, e3), and m0

is a constant of mass dimension that provides the
necessary dimensionality of mass density ρm. For any
such function M(e), the function ρm is a conserved
density, which can be verified by a direct check of the
relation

∂ρm
∂t

+ div (ρmu) = 0.

The factor M(e), by its meaning, determines some
distinctions in the properties of medium particles, and
it will play an important role iin our further interpre-
tations of the gravitational fields.

The equality (9) determines a relationship between
the properties of marker fields and the mass density of
the medium. Let us now consider how a connection is
established between the marker fields and the free fall
acceleration due to the force of gravity. To that end,
consider the formal identity

∂ea

∂ea
= 3, (10)

which holds on the Cartesian map of the marker
space E3. Let us now turn in this identity to spatial
coordinates, whose functions are the marker fields.
As a result of the point-by-point transformation of the
marker space into the coordinates of physical space,
ea → xα, the identity (10) turns into a relation of the
following form:

∂

∂xα

(

|J |∂x
α

∂ea
ea

)

= 3|J |. (11)

Since |J | is related to the medium density, it is logical
to suggest an interpretation of (11) as the Poisson
equation for free-fall acceleration, which has in this
case the form

gα = gα0 + curl z, (12)

where

gα0 =
4πG

3
m0|J |

∂xα

∂ea
ea. (13)

The term curl z makes it possible to assure that the
free-fall acceleration has the standard form of a gra-
dient field. For this purpose, the vector field ζ should
satisfy the equation

curl curl z = −curl g0,

where g0 has the components (13). Thus, all basic el-
ements describing the dynamics of a self-gravitating
medium (except for its temperature) can be expressed
in terms of the properties of the marker fields ea.

Note that partially similar constructions can be
made for a plasma flow in the magnetohydrodynamic
approximation. Indeed, since the charge density ρe
is a conserved quantity, the following equation must
hold:

ρe,t + div (ρeu) = 0. (14)

It follows that the charge density is also related to the
marker fields, like the mass density,

ρe = e0Q(e)|J |. (15)

Here Q(e) is a quantity characterizing the point
charge with the markers e, and e0 is a dimensional
multiplier that ensures the correct dimension of ρe.
This relation reflects only the fact that the medium
consists of material points, additionally endowed with
an electric charge. Unlike a real electric charge, the
charge of material points is infinitely small and not
discrete. Unlike an electroneutral medium, a plasma
is subject to both electric and magnetic fields. For
the electric field strength, the equation has a form
similar to the Poisson equation for the gravitational
field strength:

div E = 4πρe. (16)

It follows that the electric field strength can be asso-
ciated with the properties of markers by analogy with
(12) and (13). Difficulties in this case arise only with
the Lorentz force and the magnetic field. This issue
will be considered further on in the framework of the
new approach.

The main conclusion that can be drawn from the
previous analysis is that for the classical force fields,
the gravitational and electric ones, acting on a con-
tinuous medium, there is an effective representation
through the properties of marker fields ea = ea(x, t),
“numbering” the points of the medium. A more
general principle, which will be used later, is that any
material object can be represented at a certain
level of description as a set of material points
whose dynamics is formulated in terms of the
dynamics of marker fields, by definition satisfying
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Eqs. (5). This principle will be applied to space
itself. This will allow us to construct a closed scheme
for explaining the observed properties of fields and
particles using geometric and topological properties
of 3D space as a hypersurface V3 embedded in the
Euclidean 4D space W4. This approach represents
a new realization of the ideas of Clifford and Einstein
about the geometric origin of physical fields and ma-
terial particles, as well as their properties.

4. MARKER FIELDS
AND THE GEOMETRY OF SPACE

As already noted, the first starting point of the
new theory, which determines a general scheme for
explaining the properties of fields and matter from a
geometric point of view, is that 3D physical space
has the form of a non-Euclidean 3D hypersurface V3

embedded in Euclidean 4D space W4. The space W4

itself is in the theory an absolute space in which time
flows at the same rate at all its points. The difference
between this space and the absolute space of classical
mechanics is only its dimension.

This space is immaterial. This does not mean that
in future theories it will not have to be endowed with
any physical properties. But after this space will be
supplied with some measurable physical parameters,
it will have to acquire the status of a material object.

Since the hypersurface V3 is recognized as a ma-
terial object that is allocated in W4 using the equation
(1), its dynamics can be described using marker fields
ea(x, t), which now “number” not the points of the
medium, “located” in space, but the hypersurface
points of V3 themselves. The marker transfer equa-
tions in this case will coincide with the Eqs. (17) with
the difference that the coordinates x = (x1, x2, x3) of
the markers’ positions do not refer to V3, but to the
3D distinguished hyperplane P3, for which Eq. (1)
is written. The hyperplane P3 in this case should
be considered as a mathematical implementation of
an inertial reference frame. Therefore, when working
with a non-Euclidean hypersurface V3, we will use
Cartesian spatial coordinates usual for classical me-
chanics, which is significant for deriving a number of
important mathematical relations of the theory.

The use of marker fields in the construction of
the theory allows us to immediately introduce several
physical parameters that may be related to the prop-
erties of matter. To do that, consider again the marker
transfer equations (5):

∂ea

∂t
+ (VVV,∇)ea = 0, (17)

but, for convenience, we will replace the notation u
for the tranfer field with VVV with the components Vα,

bearing in mind that the transfer field VVV, specified on
the plane P3, describes a transition of points of the
hypersurface V3 rather than points of a medium.

The first parameter that can be obtained by anal-
ogy with the previous constructions is the function
|J |, the absolute value of the Jacobian of the mapping
ea → xα, which is calculated by the rule (8). In
essence, the value of |J | determines the density of
the number of markers or points of the hypersurface
V3 contained in a small neighborhood of each point
with coordinates x on the hyperplane P3. As follows
from (7), this quantity is a conserved density, which
allows it to be associated with the mass density of
matter if material objects are somehow isolated from
the structure of the hypersurface V3 itself. Following
this idea, we can assume that the real mass density
corresponding to each point of space x can be cal-
culated according to Eq. (9), but in which the con-
stant m0 of mass dimension must be a fundamental
constant. In this case, the function M(e) will reflect
the “massiveness” property of each individual point
of V3. This property of massiveness can have various
physical realizations, for example, reflect the presence
of an nonuniform “thickness” of a material object
described in the theory as a material hypersurface V3.

The second natural property of space as a material
object which we obtain using marker fields, is the field
of gravity. By analogy with the medium density, we
will assume that the function

ρm = m0M(e)|J |, (18)

is the mass density of points belonging to V3, pro-
jected onto P3. Now |J | is the density of mark-
ers, while M(e) is the “massiveness” property of the
points of V3 itself. For any function M(e) and the
transfer field VVV, the function ρm is a conserved density,
as was already pointed out:

∂ρm
∂t

+ div (ρmVVV) = 0. (19)

Moreover, choosing as M(e) different functions, one
can enumerate all possible conserved densities corre-
sponding to given |J | and VVV.

Now, using the identities (10) and (11), we arrive
at the Poisson equation

div ggg = 4πGR(x, t)ρm (20)

with the components

gα = gα0 + [∇× z]α, α = 1, 2, 3, (21)

where

gα0 =
4πm0G

3
M(e)|J |ea ∂x

α

∂ea
.
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At that, the function R has the form

R = 1 +
1

3
ea

∂ lnM
∂ea

. (22)

The last term in (21), which is essentially a gauge
for the gravitational field strength, now plays a differ-
ent role from that of the similar term in (12). Now
there is no reason to believe that the field ggg should be
a gradient of some potential. However, the term curl z
can provide special conditions for ggg at large distances
from material bodies, where, according to Newton’s
theory of gravity, the acceleration of gravity should
tend to zero.

Let us make a few remarks on the relations ob-
tained.

It is not difficult to see that if M(e) is not a con-
stant, then in the right-hand side of the generalized
Poisson equation (20), the factor R emerges before
the medium mass, which can be associated with the
phenomenon that is currently called the hidden mass
or the mass of dark matter. This initially makes
the theory suitable for explaining dark matter as a
property of space itself. This idea was discussed in
more detail in [4, 7].

The second remark is that, in the theory being
developed, there is no reason to ensure that this field
ggg(21) is a gradient of some potential. In the problems
of classical theory, due to Newton’s law of gravity,
the gravitational field strength should be a gradient
of a potential. But when constructing a theory that
connects the gravitational field with the geometric
properties of space, there is initially no need to in-
troduce such a requirement. At the same time, a
vortex component of this field must be included in
the theory as an additional type of action of the real
gravitational field, which, under certain conditions,
disappears or becomes so small that it turns out to
be invisible in experiments. It should be noted that
the possible existence of a vortex component of the
gravitational field was pointed out by Brillouin in [12].
This assumption arises from a simple comparison of
the classical Poisson equation for the gravitational
field and the first Maxwell equation for the electric
field strength.

Of interest is also the physical meaning of the field
ggg0, related to the way the Poisson equation emerges
in this theory. In contrast to classical mechanics,
where the Poisson equation is a direct consequence
of Newton’s law of gravitation, in the theory being
developed, the equation appears as a consequence of
the identity (10) for the coordinates ea in the marker
space. This opens up the possibility of giving a
visual interpretation of the physical meaning of the
gravitational field through the properties of V3 as a
material object. Formally, the mathematical meaning
of (20) stems from the identity (10). The initially

trivial identity (10), as a result of passing over to
coordinates on the hyperplane P3, designates the
topological continuity of numbering of points of the
physical hypersurface V3, and consequently, V3 itself.
But a clearer interpretation can be given after the
theory acquires an idea of matter particles.

5. THE ELECTRIC FIELD
AND MARKER FIELDS

For an introduction of matter particles to the the-
ory, it is necessary to list their fundamental properties,
to be explained and described in terms of the geometry
and topology of V3, linking them with marker fields.
First of all, it is necessary to introduce into the theory
the idea of an electric charge and the electromagnetic
fields associated with it. However, now we cannot
simply endow the points of V3 with the electric charge
property, as could be done for a plasma. An important
circumstance to be taken into account in the new
geometric realization of an electric charge is its dis-
creteness. If we attribute the property of having an
integer charge to points of V3, which is thought of as
a smooth hypersurface inW4, then the density of such
a charge will be a discontinuous function everywhere,
and the total charge of individual regions of space
will change unpredictably. Therefore, the very integer
nature of the electric charge indicates that such a
quantity should not characterize points of V3, but
rather its individual regions. At the same time, it
is necessary to take into account that the electric
charge in experiments has spatial localization. The
charge is “concentrated” inside individual elementary
particles—electrons, protons, etc. Meanwhile, the
electron behaves in scattering experiments as a point
object, and point scatterers (partons) are found in
the structure of nucleons. Taking into account the
discreteness of the charge magnitude and the data
on charge localization inside the particles, it can be
concluded that the charge should be treated as an
element of topology of the hypersurface V3.

In mathematics, integer quantities characterizing
the structural features of spatial regions are asso-
ciated with their topological invariants [20, 24–26].
Therefore, an approach based on the theory of topo-
logical invariants of 3D regions of space should be
considered as a natural approach for introducing an
integer electric charge into the theory, and as it will
turn out later, other charge numbers, for example, a
baryon charge. Such an idea was proposed in [17, 18].

A way to construct the necessary description
of matter particles endowed with discrete integer
charges can be seen in the use of differential identities
for marker fields, as was done for the gravitational
field. The idea of using marker fields to introduce
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discrete electric charge theory was proposed in [1–
5]. The same approach gives a natural description of
matter particles as regions of space distinguished in a
special way.

By analogy with the identity (10), consider another
identity written in the coordinates of the marker space
E3. This identity has the form

∂

∂ea
ea

|e|3 = 4πδ(e), (23)

where |e|2 = s
∑3

a=1(e
a)2, with the Dirac delta func-

tion δ(e) = δ(e1)δ2(e2)δ(e3) having as its carrier the
origin of the marker space. In physics, the iden-
tity (23) is a formal consequence of the Coulomb law
and a definition of the field strength of a point electric
charge equal to uniity.

Transforming this identity, as in the case (10), to
the coordinates on P3, we arrive at the relation

∂

∂xα

(
|J |
|e|3 e

a ∂x
α

∂ea

)

= 4π|J |δ(e(x, t)). (24)

Here, in the r.h.s., there is an expression containing
a δ function of the fields ea(x, t), which are in turn
functions of the coordinates. From the properties of
the δ function [15] it follows

δ(e(x, t)) =

N∑

k=1

1

|J(xk(t), t)|
δ(x − xk(t)), (25)

where the sum is taken over all zeros of e(x, t) on
P3, having the coordinates xk(t): ea(xk(t), t) = 0,
a = 1, 2, 3, k = 1, . . . , N .

The form of this relation makes it possible to for-
mally interpret it as the first Maxwell equation,

div DDDq = 4πρq, (26)

for the electric field with induction DDD, with the com-
ponents

Dα
q =

|J |
|e|3 e

a ∂x
α

∂ea
, α = 1, 2, 3, (27)

where ρq is determined by Eq. (25) and has the form

ρq = e0

N∑

k=1

δ(x − xk(t)). (28)

The factor with the transformation Jacobian in the
expression for ρq cancels. The meaning of such an as-
sociation is, from a physical point of view, that flows of
the field e through any closed surface σ surrounding
the origin in the marker space E3 is equal to the flow
of the field DDDq through the image of S on P3 on the
surfaces σ on E3 as a result of mapping e → x. Since
the flow of the e field through σ is equal to 1, the flow

of the DDDq field is also equal to 1. What is remarkable
in this comparison is that discrete charges with a
value of q = 1 appear in the theory, and at the same
time they do not create problems with divergences of
energy [2, 3]. It can be easily shown [2, 3] that the
field DDDq with the components (27) has a Coulomb
asymptotic at the points xk, which form the carrier
of the function δ(e), but the structure of V3 remains
smooth.

Nevertheless, the use of DDDq as induction of the
fundamental electric field requires additional clarifi-
cations. First of all, it is necessary to introduce the
concept of matter particles as some elements of the
V3 structure. It is also necessary that two types
of electric charges should appear in the theory, the
positive and negative ones. Only then will there be
a reliable basis for associating DDDq with the induction
field. To solve these problems, it is necessary to
associate ea(x, t) with geometric properties of V3,
which has not yet been done. We have only stated
that ea(x, t) are markers of points of V3.

6. TOPOLOGICAL CELLS
AND MATTER PARTICLES

To establish a connection of the properties of
marker fields with the geometry of V3, we use the fact
that this hypersurface V3 is allocated in W4 using
Eq. (1) with some height function F(x, t), which
we will further on call the fundamental potential.
Based on the fact that F(x, t) determines the locus of
the points of V3 in W4, this function itself must be a
marker, i.e., it must be a function of the marker fields
ea(x, t). It is useful to define the dependence type of
F = F(e) in a convenient way for using in particle
theory. Such a simplest way is the relationship

F = Fi +
εi
2
|e|2, (29)

written for each separate region of the space Vi, i =
1, 2, . . ., bounded by the isosurface of the function
F(x, t), inside which it reaches a single local ex-
tremum, a minimum or a maximum, or has no ex-
tremum at all. We will call such regions of space
simple topological cells. The function F0(t) is the
value of the function F(x, t) at the extremum corre-
sponding to Vi, and the value of εi for a maximum is
−1, and for a minimum εi = 1. Simple topological
cells containing no extremum of the function F(x, t)
will be called empty topological cells.

Any region of the space P3 bounded by a closed
isosurface of F(x, t) will be called a topological cell.
Besides simple topological cells, we select basic
topological cells bounded by special isosurfaces on
which there is at least one saddle point of the function
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F(x, t). A visual representation of what is meant
by topological cells is given by Fig. 1, which shows
an analogue of V3 in the form of a two-dimensional
surface. The points P1, P2, P3 are local extrema
of the function F(x, y), which is an analogue of the
fundamental potential F(x, t). Extrema and special
isolines of the function F(x, y) are projected onto
the plane P3, bounding the basic topological cells.
Simple topological cells are highlighted in light gray,
and empty topological cells in dark gray.

In what follows, we will suppose that, from a topo-
logical point of view, V3 is arranged in a sufficiently
simple way. We will assume that the number of
critical points of the function F(x, t) in any bounded
region of space is finite, i.e., the function F(x, t)
as a hight function of a smooth hypersurface V3 in
W4 is a Morse function [16]. This will simplify all
necessary references to the topological properties of
V3, which will be needed in the future. For example,
in the framework of this general hypothesis, it can be
assumed that the entire region of the hyperplane P3,
on which the points of V3 are projected, can be com-
pletely divided into topological cells. This agreement
is adopted in order not to consider, at least at the first
stage of theory construction, too complex topologi-
cal structures that are possible from a mathematical
viewpoint.

The (29) relations unify the description of topo-
logical cells and make it possible to give an integer
electric charge a topological meaning. According to
(29), each simple topological cell has its own separate
sheet Ei of the marker space. For nonempty simple
cells, the origin on the Cartesian map of the marker
space is mutually unambiguously mapped to the local
extremum lying in this cell. At the same time, in ac-
cordance with (29), each isosurface F inside the cell
is mapped into a concentric sphere in the Cartesian
map of the sheet Ei, whose radius is determined as

R =
√

2|F − F0|. (30)

The whole cell is then mapped to a ball centered by the
origin. The radius of the ball to which the boundary
∂Vi of the cell Vi is mapped, is equal to

Ri =
√

2|Fi −F0|,
where Fi is the value of F(x, t) on the isosurface that
bounds the cell.

Since an empty cell does not contain extrema,
the choice of F0 for it in Eqs. (29) can be arbitrary.
Depending on the choice ofF0 for an empty cell, it can
be displayed in a spherical layer on the corresponding
sheet Ei. But with a special choice of the value of
F0, coinciding with the value F = Fs on one of the
special isosurfaces Si bounding it, the cell maps to a
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Fig. 1. Two-dimensional analogue of the physical hy-
persurface V3 with a visible presentation of all types of
topological cells.

ball. In this case, the whole isosurface Si maps to a
point located at the origin of the sheet.

Nonsimple (complex) basic cells contain simple
topological cells as structural elements, as can be
seen in Fig. 1. The basic cells will be further inter-
preted as matter particles, whose structural elements
will be simple topological cells. Let us note that in
using such a principle in the description of matter
particles, one can see a connection with the ideas that
were expressed by Clifford in [13].

7. THE ELECTRIC CHARGE
OF TOPOLOGICAL CELLS

The principle of matter particle presentation by
basic topological cells must be confirmed by a proof
that the dynamics of such objects obeys the laws
of quantum theory and Newton’s laws in a certain
averaged meaning. Such proofs will be presented
furter on. In addition to dynamic criteria, it is also
necessary to indicate how the structure of particles is
related to a discrete electric charge and other charge
numbers such as the baryonic number. The general
idea of such constructions was stated earlier in [1,
4, 5, 17, 18]. It makes sense to give a detailed
presentation of this issue, related to an analysis of the
topology of 3D regions of the hypersurface V3 in a
separate paper, especially since not all details of the
calculations for the charge properties of particles are
clear by now. Here we will focus on a presentation of
general principles of such constructions.

A starting point for further constructions will be
the use of Eqs. (26), (27), and (28) as a method
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of the description of the fundamental electric field of
particles, represented by topological cells. Based on
the fact that, for each simple topological cell number
i, the marker fields take values on a separate sheet
Ei, the relations (26), (27), and (28) should be written
separately for each topological cell. In this case, each
simple cell, due to the fact that Eq. (26) has in its r.h.s.
a δ function at a point with the coordinates xi(t),
contains a point charge at this point. The sign of
this charge should in essence be determined by where
the electric induction or strength field is directed at
the cell boundary—inward or outward. This is how
the gradient field ∇F behaves, its direction on the
boundary of a simple cell is determined by the sign εi
in Eq. (29). Using (29), we can determine where the
DDDq field is directed to ∂Vi. Differentiating (29) in xα,
we find

∂F
∂xα

= εie
a ∂e

a

∂xα
, α = 1, 2, 3.

Hence it follows

ea
∂xα

∂ea
∂F
∂xα

= εi|e|2. (31)

The last relation shows that the field KKK with the com-
ponents

Kα = |J |ea ∂x
α

∂ea
, (32)

which is a common element in expressions for both
fields ggg and DDDq, is transversal to the isosurfaces of
the function F , i.e., it is almost everywhere directed
outward from the region bounded by the isosurface.
Indeed, if εi = −1, then there is a maximum of F
inside the simple cell, and the field ∇F is directed
inward. In this case, we have on the bounding iso-
surface ∂Vi that

ea
∂xα

∂ea
∂F
∂xα

= −|e|2 ≤ 0,

that is, the projection of the field KKK onto ∇F is neg-
ative everywhere on this boundary, except for criti-
cal saddle points. It just means that KKK is directed
outward. Thus to take into account the sign of the
cell charge in the expression for the induction, it is
necessary to replace the field DDDq on each simple but
nonempty cell with a field of the following form:

DDD = εiDDDq. (33)

A similar relationship will take place for empty cells,
in which the charge sign will be determined by the di-
rection of the field ∇F , but it must be then consistent
with charges in the neighboring simple cells. This
issue is very important and will be discussed later. In
this case, on each simple topological cell we have the
first Maxwell equation for the discrete point charge:

div DDD = 4πεiδ(x − xi). (34)

Having obtained a description of the electric field
induction on each individual simple cell, it is now
necessary to combine it into a unified field on the
whole hyperplane P3. To do that, it is necessary to
additionally require that for the DDD fields at cell bound-
aries, the boundary conditions standard for classical
electrodynamics are valid. This issue was discussed
in [2]. According to classical electrodynamics, the
normal component of the induction field should expe-
rience a jump in values on the boundary of cells with
conditional numbers 1 and 2, equal to the value of the
surface charge density σ on the boundary:

DDD(2)
n −DDD(1)

n = 4πσ.

Since we are dealing with discrete charges, there can-
not be any surface charge density on cell boundaries,
σ = 0. Therefore, the condition for DDD should turn into
its continuity condition on cell boundaries: DDD(2)

n =

DDD(1)
n . This condition, by using (27), (33) with (31),

takes the form
|J |
|e|

∣
∣
∣
∣
1

=
|J |
|e|

∣
∣
∣
∣
2

. (35)

It has been taken into account here that the function
F itself and its derivatives are everywhere continuous
in P3. We will discuss the meaning of these condi-
tions later, when revealing in more detail the meaning
of the function |J | in particle dynamics.

8. THE ELECTRIC CHARGE AND EULER
CHARACTERISTIC OF TOPOLOGICAL

CELLS

To complete the description of the electric induc-
tion field DDD and its “resources,” it is necessary to
specify a general method of calculating the charge
of complex topological cells, which, as already men-
tioned, will be further considered as matter particles.
In physics, the magnitude of the charge contained in
a certain region of space V is associated with the flux
of the induction field through the boundary ∈ V of this
region:

q =

∮

∂V

DDDαdσα.

For the field DDD, an expression for the charge contained
in a region bounded by any isosurface of the funda-
mental potential F inside the corresponding cell Vi,
has the form

qi =

∮

∂Vi

DDDαdσα =

∮

∂Vi

εi|J |
|e|3 ea

∂xα

∂ea
dσα = εi. (36)

This expression, according to [24], represents the
Euler characteristic of the region Vi for which the
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Fig. 2. Correspondence of 2D analogues of topological cells on P3 to sheets in the marker space E3. P0 is a saddle point of the
function F .

charge is calculated. The Euler characteristic [19, 20,
25–27] is a topological invariant of the corresponding
region, it does not change at smooth deformations of
this region [19, 20, 25–27]. Thus the discrete electric
charge in this theory [1, 2] turns out to be associated
with an integer quantity, the Euler characteristic of
topological cells:

qi = εiχ(Vi). (37)

The sign of the particle charge in this relation as the
field flux magnitude is determined by the direction
of the field DDD at the cell boundary. This direction
is determined by the number εi, which is called in
topology the Poincaré-Hopf index [25, 26, 27]. The
above relation is an important element of the new
theory, which allows us to construct a charge clas-
sification of possible structures of topological cells
[1, 4, 5]. The most significant in Eq. (37) is that
the particle charge turns out to be a property of the
topology of the material hypersurface itself V3. This
means that electrodynamics also receives a geometric
and topological interpretation. Such an attempt was
made earlier by Wheeler and Misner in the framework
of GR [21–23].

For clearer understanding of how the relations (36)
work, let us make some clarifications. The first one is
that the Euler characteristic χ(Vi) of a region Vi in
3D space, bounded by a closed surface ∂Vi, is equal
to half of the Euler characteristic of this boundary:

χ(Vi) =
1

2
χ(∂Vi). (38)

This means that the electric charge of particles is de-
termined by the topology of the boundary of topologi-
cal cells, which simplifies the classification of possible
particle structures, which was described earlier in [1,
2, 5]. The main ideas of such a classification will be
presented here later on.

Another clarification concerns the calculation of
the Euler characteristic, and consequently particles
charges, based on the boundary structure of the cor-
responding topological cells. By definition, basic
topological cells are bounded by special isosurfaces
containing saddle points of the function F . Therefore,
special isosurfaces are not smooth everywhere. Being
isosurfaces of smooth functions, they nevertheless
have geometric singularities precisely at the saddle
points F(x, t). Therefore, the calculation of the Eu-
lerian characteristic of such isosurfaces has its own
peculiarities. However, difficulties with calculating
particle charges can be avoided by introducing two
auxiliary isosurfaces constructed for each special iso-
surface according to the following principle. Suppose
that the special isosurface ∂Vi corresponds to the
value F0. Then the auxiliary isosurfaces Si+ and Si−
will be understood as isosurfaces corresponding to the
values of F , equal to F0 + δF and F0 − δF , respec-
tively, where δF is an infinitesimal quantity whose
sign is defined as to fulfill the conditions Vi− ∈ Vi ∈
Vi+. This means that Vi− with the boundary S− lies
inside the region Vi bounded by the special isosurface.
In turn, Vi itself is located inside the region Vi+.
It is important that the isosurfaces Vi± are closed
smooth 2D surfaces whose Euler characteristic can
be calculated without difficulty. On the other hand,
for an external observer, the charge sign of a particle,
which is by definition a basic topological cell, will
be a flow through the external isosurface Vi+, which
simplifies a calculation of particle charges and their
classification according to the structure of smooth
isosurfaces Vi+.

Figure 2 presents a two-dimensional analogue of
the structure of two simple cells bounded by a special
isosurface containing a single saddle point P0 of the
function F . This structure is similar to the cells gen-
erated by two extrema ofP1 and P2 of the functionsF ,
shown in Fig. 1. Figure 2 shows the cells themselves,
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Fig. 3. Correspondence of the auxiliary isosurfaces V−
and V+ to the special isosurface V0 with a single saddle
point P0 of the function F .

located on P3, and, on the right, the corresponding
sheets of the marker space. The special isosurface of
the function F is the inner boundary of the auxiliary
cell V+ and the outer boundary is the isoline S+. The
curves S1− and S2− are diffeomorphic to circles, and
the cells V1− and V2− are circles. In the marker space,
the isolines S1− and S2− also correspond to circles,
which means that the flows of DDD through both of these
isolines are equal to +1 if they contain minima of F ,
and are equal to −1 if there are maxima. These ex-
trema correspond to point charges. The outer bound-
ary of V+ is also a curve diffeomorphic to a circle. In
the marker space, a curve that corresponds to it is
also a circle. Therefore, the flow through this isoline
is either +1 or −1. Therefore, at a transition through
a special isosurface, the charge value decreases by 1.
Since the field DDD, in accordance with the conditions
(35), is continuous on S+, with the exception of the
saddle point P0 of the function F , it is necessary to
assign to this point a charge inverse to the charge
of the cells V1− and V2−. This is confirmed by the
fact that the field DDD has a Coulomb asymptotics (see
[2]). Thus in this theory an electric charge should
be attributed to all critical points of the fundamental
potential, including its saddle points.

The 2D analogue considered in Fig. 2 as an ex-
ample, is useful for illustrating why an electric charge
must be attributed to saddle points of F . However, it
does not give a complete understanding of how works
the relation (37), connecting the electric charge with
the Euler characteristic of a topological cells.

For a clearer explanation of this relationship, con-
sider the example shown in Fig. 3. In this figure, a
and c, an image of the basic cell V0 is presented in

a semitransparent form, being bounded by a special
isosurface with one saddle point P0 of the function
F . The auxiliary topological cell V−, lying inside V0,
has the boundary ∂V− diffeomorphic to a sphere. This
region is mapped to a ball in the marker space, shown
in panel b. Panel c shows in real color the same basic
cell V0. The auxiliary cell V+, having a boundary in
the form of a torus, is shown in a semi-transparent
form. The image of this cell after mapping x → e to
the marker space E3 is a spherical layer, i.e., a part of
the ball, depicted in Panel d. The total flow through
the boundary of the cell V− is equal to +1 or −1,
depending on the type of extremum of F lying in V−.
Since the boundary of V+ is diffeomorphic to a torus
and has a sphere in its image on E3, the flow through
∂V+ is equal to the Euler characteristic of the torus,
which, as is well known, is zero [19, 20, 25, 27]. This
is confirmed by the general rule: the saddle points
F lying on special isosurfaces should be assigned
a charge inverse to the charge in V−, and the total
charge of a particle being a basic topological cell,
should be calculated as the Euler characteristic of
the auxiliary region V+ (37) or half of the Euler
characteristic of its boundary (38).

9. BASICS OF THE CHARGE
CLASSIFICATION OF PARTICLES

Following the general rule for calculating the
charge of particles identified with basic topological
cells, it is possible to construct a simple charge clas-
sification of particle types by the Euler characteristics
of the outer boundary of the auxiliary cell, V+ [1–
5]. Since, as a postulate in this paper, it is assumed
that the function F(x, t) is smooth, almost all its
nonsingular isosurfaces are 2D closed orientable
manifolds. The classification of such isosurfaces
reduces to a theorem [19, 20, 25–27], according to
which any such isosurface Sg is diffeomorphic to a
sphere with g handles. The Euler characteristic of all
such isosurfaces is

χ(Sg) = 2(1− g). (39)

The Euler characteristic of a sphere isχ(S0) = 2, for a
torus χ(S1) = 0, etc. In agreement with (38), the Eu-
ler characteristics of regions Vg, having as boundaries
Sg = ∂Vg, and consequently the particle charges are
equal to

q = εχ(Vg) = ε
1

2
χ(Sg) = 1− g, (40)

respectively. A sequence of such particles is depicted
in Fig. 4.
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Fig. 4. The structure of topological cells depending on
their Euler characteristics.

9.1. Interpretation of the Leptons

The simplest interpretation of particles whose
charges are calculated by Eq. (40) and are shown n
Fig. 4, is their interpretation as leptons according to
Table 1.

An indirect confirmation of this interpretation is
the muon decay, whose topological reconstruction
is shown in Fig. 5. The muon corresponds to a
topological cell with g = 2. The main channel of
muon decay is the decay into two neutrinos and an
electron, which corresponds to Fig. 5. The particle
designated in the table as λ∓2 is a hypothetic lepton
with a charge ∓2, whose decay, according to the
topological reconstruction, should occur into a muon,
an electron and a neutrino, or into two electrons and
three neutrinos.

The classification corresponding to Table 1 ob-
viously does not restrict all possible structures of
topological cells. The simplest addition is to include
structures whose auxiliary isosurface is fixed, but the
number of saddle points of F that lie on a special iso-
surface changes. This is shown in Fig. 6 using as an
example a toroidal surface V+, depicted in translucent
color with one, two and three saddle points P1, P2, P3.
Since the charge of such cells remains zero, they can
be compared with different types of neutrinos, which
in Table 1 and in Fig. 4 correspond to a torus with
g = 1.

Table 1. Classification of leptons

g 0 1 2 3

χ(∂V+) 2 0 −2 −4

q ±1 0 ∓1 ∓2

Type e+ ν μ∓ λ∓2

e±

~

~

�

�

�±

�± � e± + � + �

Fig. 5. Topological reconstruction of muon decay: μ+ →
e+ + ν + ν̃.

9.2. Interpretation of the Structure of Nucleons

In addition to these simple types of cells, other
possible topological structures should be included in
the general classification. Such structures primar-
ily include the Wheeler-Misner [21–23] topological
handles, using which the authors of this idea proposed
to explain the electric charge in the framework of
GR, which would avoid the energy divergences for a
point charge that are standard for electrodynamics.
The Wheeler-Misner topological handles can be an
element of topologies of smooth 3D hypersurfaces
[27] and therefore should be included in the general
classification of particles. As was shown in [5], the
most natural way to include Wheeler handles in the
general scheme is to establish a relationship between
their number and the baryon charge.

Figure 7 presents 2D analogues of Wheeler han-
dles. The handles are oriented on different sides of V3.
For simple reasons, each handle should be assigned a
baryon charge b = +1 or b = −1, depending on which
side of V3 it is “glued” into this hypersurface.

As already discussed, the electric charge of such
structures will be entirely determined by the external
auxiliary isosurface of the V+ of the function F . This
outer isosurface can be either a sphere, or a torus, or
another smooth isosurface. For clarity, in Fig. 8 the
Wheeler handle is presented with some elements of
internal structure determining its charge properties.
In the 3D case, the handle structure will contain an
extremum and special isosurfaces V1 and V2. Each
of V1 and V2 is a pair of spheres “glued” together at
one point. The outer isosurface, whose analogue is
V+, can be a sphere or a torus. In these cases, it is
quite natural to assume that a handle with V+ in the
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Fig. 7. 2D analogue of Wheeler handles with interpreta-
tion of the baryonic charge.

form of a sphere is a proton model p+, and with V+

in the form of a torus it is a neutron model with zero
charge. The adequacy of this interpretation can be
seen in the corresponding topological reconstruction
of the decay of a free neutron, presented in Fig. 9. This
figure shows a neutron and a proton in a form that
an external observer would have to see. Inside the
translucent outer isosurfaces in the form of a torus
(neutron) and a sphere (proton), two spherical ob-
jects can be seen, which conventionally represent the
necks of Wheeler handles. The decay of a free neutron
occurs according to the weak decay scheme, resulting
in the emergence of a proton (antiproton), an electron
(positron) and a neutrino. This reconstruction, as
well as the reconstruction of the muon decay (Fig. 5),
suggests that from the point of view of the geometry
of space, a weak decay is a topological rearrangement
of the outer isosurface of the particle.

In this paper we will not dwell on the develop-
ment of a general scheme of interpretation of all types
of particles, including mesons and other types of
baryons, as well as issues related to unitary symme-
tries, which are the basis of modern understanding
of the particle structure. In part, a description of
some mesons and nuclei of simple atoms which can
be established based solely on their charge properties,
is given in [5]. Here we just note that the charge
of almost all types of particles can be described by a
general formula that follows from the general formula
for calculating the Euler characteristic in terms of the

u = F(x, y)V3

V1

V2V+

P3

Fig. 8. Structure elements of a Wheeler handle.

�

n p±

e±

n � e± + p± + �
Fig. 9. Interpretation of nucleons and a topological re-
construction of neutron decay.

Betti numbers pi, i = 0, . . . , 3 [19, 20, 24, 25, 27]:

χ(V) = p0 − p1 + p2 − p3. (41)

The Betti numbers of 3D manifolds with an edge are
equal to [19, 20, 24, 27]

p0 = 1, p1 = g + b, p2 = 1 + b, p3 = 1,

where g is the number of handles in the structure of
the cell boundary (determined the charge), while b
is the number of Wheeler handles, i.e., the particle’s
baryonic number. As a result, the relation (41) may
be interpreted as the Gell-Mann-Nishijima formula
[28]:

Q =
b+ S

2
+ J3,

where Q is the particle charge, S is the strangeness,
and J3 is the isospin projection. The numbers S
and J3 can be explicitly calculated from the values
of the Betti numbers [5]. The issue of a topological
classification of particles, which is important in all
respects, requires using not only the charge proper-
ties of particles in their interpretation, but also cal-
culations of their mass and spin. It makes sense to
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carry out such calculations in a separate paper. Note
only that the topological interpretation of the Gell-
Mann-Nishijima formula indicates that in this theory
there is no need to introduce the concept of quarks as
particles with a fractional electric charge, which are
used in chromodynamics to explain the existence of
unitary symmetries in the particle structure.

10. FUNDAMENTAL ELECTROMAGNETIC
AND GENERALIZED GRAVITATIONAL

FIELDS

Let us now consider how the fundamental mag-
netic field emerges in this theory and how it is related
to marker fields. To do so, consider how the field
KKK (32) changes with time due to marker transferin
accordance with (17). All necessary constructions
have been described in detail in [7]. Therefore, here we
present their result, making reference to the details of
these constructions presented in Appendix A.

The initial problem to be solved next is to calculate
the time derivative of the KKK field. To do that, we
present this field using the identities (A.1) in the
following form:

KKK = εabc[∇eb ×∇ec]ea. (42)

Here εabc is the antisymmetric Levi-Civita sym-
bol. This form of KKK follows from a component-by-
component usage of the inverse Jacobi matrix of the
mapping e → x. Now calculate the time derivative of
the KKK field using (42):

∂KKK
∂t

= εabc[∇eb ×∇ec]
∂ea

∂t

+ 2εabc

[

∇∂eb

∂t
×∇ec

]

ea. (43)

Let us consider separately the two terms in the r.h.s.
of this relation. To calculate them, we use the iden-
tities given in Appendix A and the transfer equa-
tion (17) for marker fields. Then we have

εabc[∇eb ×∇ec]α
∂ea

∂t

= −εabc[∇eb ×∇ec]α
∂ea

∂xβ
Vβ = −|J |Vα. (44)

Here we have used the identity (A.2). As a result, for
the second term in (43) we find:

εabc

[
∇∂eb

∂t
×∇ec

]
ea

= εabcε
αβγ ∂

∂xβ

[
ea

∂eb

∂t

∂ec

∂xγ

]

− εabcε
αβγ ∂e

a

∂xβ
∂eb

∂t

∂ec

∂xγ
= curl ZZZ − |J |VVV. (45)

The field ZZZ has the components

Zγ = εabce
a ∂e

b

∂t

∂ec

∂xγ

= −εabce
aVβ ∂eb

∂xβ
∂ec

∂xγ
= −Vβλβγ . (46)

Uning now the indentities (A.3) and (A.4), we arrive
at the relations

λμν =
1

2
Kγεγμν . (47)

Substituting this into (46), we finally have

Zγ = −Vβλβγ =
1

2
VβKμεμβγ , (48)

or, in the vector form,

ZZZ = −1

2
[KKK ×VVV]. (49)

Substituting the resulting relations (44), (45) and
(49) to (43), we finally obtain

∂KKK
∂t

= −curl
(
[KKK ×VVV]

)
− 3|J |VVV. (50)

It is the sought-for induction equation for the field KKK.
Let us now use the fact that the fields DDD and ggg differ

from KKK by only functional factors:

DDD =
ε

|e|3KKK, ggg =
4πGm0

3
M(e)KKK.

Accordingly, the induction equations for these fields
will have the form [7]

∂DDD
∂t

= −curl
(
[DDD ×VVV]

)
− 4πρeVVV, (51)

∂ggg
∂t

= −curl
(
[ggg ×VVV]

)
− 4πGρmRVVV, (52)

where ρm = m0M(e)|J | is the mass density of space,
the function R is defined by (30), and

ρe =
N∑

k=0

εkδ(x− xk(t)).

In the last expression, the sum is taken over all critical
points of the fundamental potential F , including its
saddle points. Comparing (51) with the correspond-
ing fourth equation of Maxwell’s theory, we establish
that in the present theory the fundamental magnetic
field strength HHH should be calculated as

HHH =
1

c
[DDD ×VVV] +∇ΦH , (53)

where c is the speed of light, and ΦH is a scalar poten-
tial of the magnetic field which should satisfy the con-
dition that magnetic charges are absent (Maxwell’s
second equation),

div HHH =
1

c
div [DDD ×VVV] + ΔΦH = 0.
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Accordingly, the electric current density will be cal-
culated by the formula

jjj =
4π

c
ρeVVV,

i.e., it will coincide with the current density of point
charges. Then, automatically, the electric charge
conservation law will hold:

∂

∂t
ρe + div jjj = 0.

The gravitational field induction equation (52) is
absent in the classical theory of gravity, though its
formal existence was discussed in [12]. The absence
of a necessity to have such a field in classical the-
ory, despite the obvious similarity of the theories of
gravity and electromagnetism, follows from the fact
that in classical celestial mechanics and astrophysics
it did not make sense to include into consideration
any additional fields at the achievable accuracy of
measurements. The situation has changed only in the
recent decades, when the accuracy of measurements
has reached such a level that using atomic clocks
and radars it is possible to measure effects that are
usually attributed to the effects of SR and GR. In
GR, the gravitational field is not reduced to a single
gradient strength field (free fall acceleration) and is
described by very complex Einstein equations for six
independent components of the metric tensor.

In the theory considered here, according to (52),
it is necessary to introduce the field ZZZ, which can be
called, as in [12], a gravimagnetic field, and which
should have the form

ZZZ =
1

c
[ggg ×VVV] +∇ΦG, (54)

where ΦG is a potential playing the same role as ΦH

for the magnetic field. The field jjjG,

jjjG = ρmRVVV,

should be considered as the mass current density.
The factor c−1 in the expression (54) is introduced
by analogy with (53), reflecting the relative smallness
of the gravimagnetic field effect on the dynamics of
matter particles, like the magnetic field in Maxwell’s
theory. In Maxwell’s theory, the factor c−1 gets into
the dynamic equations for charged particles moving
at a speed of v in the expression for the Lorentz force:

FL = −q

c
[H× v]. (55)

The Lorentz force expresses the experimental data on
the motion of charged particles in a magnetic field.
So far there are no serious grounds to believe that
an effect of the gravimagnetic field on particles should
be much different from the effect of the Lorentz force.

The similarity of induction equations for DDD and ggg sug-
gests this idea. As a result, it should be assumed that
in reality the gravimagnetic force acts on particles by
a similar rule:

FG = −m

c
[ZZZ × v]. (56)

The factor c−1 apparently determines the smallness
of the effects detected in the experiments of recent
decades and attributed to GR. To confirm this hy-
pothesis, it is necessary to carry out calculations of
the dynamics of bodies in celestial mechanics using
(56) and thus to confirm or refute it.

11. THE FIELD ENERGY AND MASS

To complete the description of the dynamics of
the fundamental fields connected with points of the
hypersurface V3 by numbered marker fields, it is nec-
essary to introduce field energy into the theory. Note
that the mass density of the hypersurface V3 in a
projection onto P3 was introduced by Eqs. (18). It
is logical to assume that the field energy should be
a conserved quantity, and its density should in some
way repeat at least formally the general form of the
energy density of the electromagnetic field.

The standard form of the electric field density in
Maxwell’s electrodynamics is, up to a multiplier, a
scalar product of the induction vectors D and the
electric field strength E: W = (E,D)/4π. In the
present theory, the fundamental electromagnetic field
strength is not yet present.

We introduce the strength EEE of the fundamental
field so that its energy, calculated by the formula

W =
1

4π

∫

V

(DDD,EEE)dV, (57)

is a conserved quantity. To achieve that, it is sufficient
to suppose [1–3] that the strength EEE has the following
general form:

EEE = Q(e)∇F , (58)

where Q(e) is some function of the markers. Then, on
each simple topological cell Vi, with (31), we have

(DDD,EEE) =
|J |Q(e)εi

|e|3 ea
∂xα

∂ea
∂F
∂xα

=
|J |Q(e)

|e| .

It follows from this relation that if we choose Q(e) as

Q(e) = 4πkM(e)|e|, (59)

then the energy density W will have the form

ρW = 4πkM(e)|J |, (60)
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and the field energy will be connected with the mass
according to

W = k

∫

Vi

M(e)|J |dV. (61)

If we now choose k = m0c
2, where m0 is a fundamen-

tal mass constant, and c is the speed of light, then
the latter relation becomes the Einstein formula that
connects the mass and energy of matter,

W = Mc2.

As a result, one of the most important relations of
SR arises in the present theory without aneed to
introduce the postulates of SR. It should be noted
that any choice of Q(e) will make the corresponding
quantity W an integral of motion, since M(e)|J | is
a conserved density. Therefore, the choice of (59)
should be distinguished in a special way among all
other choices of Q(e). Indeed, substituting (59) into
(58), we find:

EEE = 4πM(e)|e|∇F = εiM(e)∇ΦE ,

where

ΦE =
4π

3
|e|3.

It follows that ΦE is the volume of a ball on the
Cartesian map of the marker space, with a center
at the origin and a radius |e| = R =

√
2(F − Fi),

i.e., the actual number of markers inside the special
isosurface F corresponding to R(x, t). It should be
noted that there is no simple connection between
the induction field DDD and EEE in this theory, which
indicates an anisotropy of the electrical properties of
the “curved” hypersurface V3 in the interpretation of
classical electrodynamics of continuous media.

12. PARTICLE DYNAMICS
AND NEWTON’S EQUATIONS

Having obtained a general description of the fun-
damental gravitational and electromagnetic fields as
properties of the hypersurface V3, it is now necessary
to describe the dynamics of particles, which are con-
sidered in this theory as extended (nonlocal) objects,
but with point singularities coinciding with critical
points of the fundamental potential F(x, t). Such
particle structure in this theory allows us to find a
way to interpret the duality of quantum particles. In
quantum theory, particles behave in some conditions
as nonlocal objects, waves, and in others as point ob-
jects. This duality, or even contradiction, belongs to
the basic postulates of quantum theory. In particular,
according to Born’s statistical postulate [10, 29], the
probability density ρp to find a particle at a point with

coordinates x at time t is equal to the absolute value
of the wave function Ψ(x, t):

ρp = |Ψ(x, t)|2. (62)

Thus, the idea of a poin nature of particles is intro-
duced into quantum theory, and on the other hand, the
whole description is based on nonlocal mathematical
structures associated with the function Ψ(x, t), de-
scribing the wave properties of particles. As is well
known (see, e.g., [10]), this leads to the impossibility
of obtaining a rational interpretation of the entire set
of laws of quantum theory, which still gives remark-
able results when calculating many effects of matter
structure at the level of atoms and molecules.

To build a new interpretation of quantum theory
in the framework of the proposed new theory, it is
possible to approach the solution of this problem from
several sides. One of the ideas is to construct the
dynamics of the critical points of the function F(x, t)
with known dynamics of F itself. This approach
is possible and provides some useful information on
particle dynamics, but it is hard to connect it with
the parameters of particle motion measured in the
experiment. In reality, we do not directly observe
the extrema themselves. An approach that can be
compared to the approach of modern quantum the-
ory, consists in constructing an averaged dynamics
of particles as extended objects. To implement such
an idea, it is above all necessary to find a suitable
replacement of Born’s statistical postulate (62).

To obtain the averaged characteristics of particles
as extended objects, we have at least one conserved
density |J | at our disposal. Therefore, for each par-
ticle that corresponds to some cell Vi bounded by a
special closed isosurface, using ρ = M(e)|J | one can
assign the average coordinates Xi(t) [1, 3, 4] by the
following rule:

Xα
i =

m0

M

∫

Vi

xαρdV, (63)

where Mi = m0

∫
Vi
ρdV is a normalizing factor co-

inciding with the particle mass if the mass of the
whole set of points of Vi is assigned to the particle,
and the mass density is taken as ρm = m0M(e)|J |.
Differentiating Eq. (63) in t, we arrive at the relations

V α
i =

dXα

dt
=

m0

Mi

∫

Vi

xα
∂|J |
∂t

dV +

∮

∂Vi

|J |xαvβdσβ

=
m0

Mi

∫

Vi

Vα|J |dV

+
m0

Mi

∮

∂Vi

|J |xα(vβ − Vβ)dσβ .
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Here, vβ are the velocity components at motion of the
points of the isosurface ∂Vi at its own motion and
at changes of its geometry. The calculation details
are given in Appendix B. Assuming that points of
the isosurface ∂Vi are transported by the field VVV, we
automatically obtain that at this boundary vα = Vα.
As a result, we finally get

V α
i =

dXα
i

dt
=

m0

Mi

∫

Vi

Vα|J |dV, (64)

that is, the average motion velocity of the particle as a
whole, connected with the transport field VVV, is equal
to the particle volume-averaged value of this field.
Similarly, for the particle’s average acceleration we
find (see Appendix B)

Aα
i =

d2Xα
i

dt2

=
m0

Mi

∫

Vi

(
∂

∂t
Vα + Vβ ∂

∂xβ
Vα

)

|J |dV. (65)

Here, the quantity in parentheses in the integrand is
the Euler local acceleration of a fluid medium with
the velocity field VVV. Therefor the vector Ai with
components given by (65) is the particle’s average
acceleration. Therefore, the relation (65) can now
be formally considered as the Newtonian equation of
particle dynamics by writing it in the following form:

Mi
d2Xα

i

dt2
= Fα

i , (66)

where Fα
i are components of the vector FFF of the

summed force applied to the particle,

Fα
i = m0

∫

Vi

(
∂

∂t
Vα + Vβ ∂

∂xβ
Vα

)

|J |dV. (67)

It is important that the inertial mass Mi is calculated
here as an integral of the mass density of points of the
hypersurface V3 over the particle volume. But it is
this mass that appears in the dynamic equations of
the fundamental gravitational field (20) and (52). So
in this theory there is no need to introduce a special
postulate on equivalence of gravitational and iner-
tial forces. The equality of inertial and gravitational
masses holds a automatically in this theory if the
gravitational force in the averaged equations appears
in the form of the averaged free-fall acceleration ggg
in the fundamental gravitational field with strength ggg
(21).

13. FORCES ACTING ON A PARTICLE
To be able to compare (66) with the equations

of particle dynamics in classical physics, it is nec-
essary to show that the force FFF takes the form of

standard forces, such as gravitational and electro-
magnetic ones. To do that, it is necessary to represent
(67) in a form suitable for solving such a problem [1,
3]. Let us formally present the transfer field as a set of
two fields:

VVV = ∇χ− γ0AAA, (68)

where χ(x, t) and AAA(x, t) are some auxiliary fields, a
scalar one, χ(x, t), and a vector one, AAA(x, t). The
constant γ0 has been introduced for the final result
to take a form known from electrodynamics. This
splitting doe not impose any restrictions on VVV. Then,
using the standard relations from vector analysis (see
Appendix B) used in hydrodynamics, we find:

∂

∂t
Vα + Vβ ∂

∂xβ
Vα = −γ0

(
∂

∂t
Aα +

∂Φ

∂xα

)

− γ0[curl AAA ×VVV]α +
∂

∂xα
U, (69)

with

U =
1

2
VVV2 +

∂

∂t
χ+ γ0Φ, (70)

and the scalar field Φ has been introduced for conve-
nience of further interpretation of the relations (69).
The meaning of splitting (68) becomes clear if we
interpret AAA as the vector potential of the classical elec-
tromagnetic field, which is no longer fundamental.
Then the scalar field Φ should be considered as the
potential of the electric field, and the fields Eα and
Hα, defined as

Eα = −γ0

(
∂

∂t
Aα +

∂Φ

∂xα

)

,

Hα = [curl AAA]α, (71)

as the strengths of electric and magnetic fields of
classical electrodynamics. With such interpretation,
χ(x, t) should be treated as the action function of
classical mechanics, and Eq. (70) written in the form

∂

∂t
χ+

1

2
(∇χ− γ0AAA)

2 + γ0Φ− U = 0, (72)

as the Jacobi equation of classical mechanics with
respect to the action of χ(x, t) for a particle with unit
mass and charge moving in a magnetic field with
vector potential AAA and in an electric field with potential
Φ. For the functionU(x, t), the only remaining role iis
that of the potential of the classical gravitational field.

Now we can get an explicit view of the averaged
force acting on a particle. To do so, we additionally in-
troduce the following representation of classical fields:

VVV = V α(t) +VVV′, AAA = AAA(t) +AAA′,

H = H(t) +H′, E = E(t) +E′,

U = U(t) + U ′.
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Here, AAA, E, H, and U are fields obtained by averaging
over Vi with the density ρ = M(e)|J |, and fields with
a prime are field deflections from their average value
at each point of space. Substituting the fields in this
form into Eqs. (67), we obtain the relation

Fα
i = E

α − γ0[H×V]α +∇XU + Fα
q , (73)

where ∇X is a gradient by he averaged coordinates
Xα, and

Fα
q = −γ0

∫

Vi

[H′ ×VVV′]dV,

is a correction to the averaged forces due to a corre-
lation of fields’ deflection from the average. In such a
notation,

Mi
d2Xα

i

dt2
= E

α − γ0[H×V]α +∇XU + Fα
q , (74)

it becomes clear that Newton’s equations (74) are
the equations of motion of classical mechanics for a
charged particle in an electromagnetic field and in a
field with the scalar potential U(X(t), t). The cor-
rections FFFq to “classical” forces acting on a particle
have the same meaning as quantum corrections to
the mean values of forces known in quantum theory
[29]. It remains to show that the whole ideology
with averaged particle motion can be considered as
a geometric interpretation of quantum theory.

14. QUANTUM EQUATIONS OF PARTICLE
DYNAMICS

Consider the function Ψ of the form

Ψ =
√

M(e)|J |eiχ/�. (75)

Here i is the imaginary unit, and � is the Planck
constant, introduced formally. By direct calculations
with (72) and the conservation law for ρ = M(e)|J |
we verify that this function satisfies the Schrödinger
equation

i�
∂Ψ

∂t
=

1

2

(
− i�∇− γ0AAA

)2
Ψ

+ (γ0Φ− UG)Ψ = 0 (76)

for a quantum particle moving an a classical electro-
magnetic field and an additional field with the poten-
tial

UG = U − �
2

2

Δ
√
|J |

√
|J |

,

where Δ is the Laplace operator, Δ =
∑3

α=1

∂2

∂x2α
.

Similar calculations were first presented in [30], in-
dicating a connection of quantum mechanics with

hydrodynamics. Equation (76) practically does not
differ from the Schrödinger equation of quantum me-
chanics, except for a nonobvious interpretation of
the potential UG. This allows us to believe that the
present theory explains quantum theory from a geo-
metric point of view.

First of all, Born’s statistical postulate (62) re-
ceives here a geometric interpretation. The wave
function defined using Eq. (75) automatically leads to
a geometric interpretation of this postulate:

|Ψ|2 = M(e)|J |. (77)

On the right, there are quantities characterizing the
non-Euclidean nature of V3 in terms of the proper-
ties of marker fields. It seems that this completely
excludes any probabilistic treatment of this postulate.

Meanwhile, it is well known that the statistical ap-
proach in quantum theory in most problems leads to
experimentally correct calculations. Difficulties arise
in some special situations, for example, when analyz-
ing Bell’s inequalities [10], when one has to assume
that the quantum probability theory differs from the
classical one. But Eq. (77), in a certain sense, gives
an understanding of why the statistical approach is
effective in most situations. This understanding is
based on the above-mentioned conditional duality of
particles as basic topological cells. On the one hand,
particles are extended objects, but a central place in
their description is occupied by critical points of the
fundamental potential F , i.e., point objects, attributed
to point charges. In this theory, these special points
correspond to well-defined markers. It remains to re-
call that the function |J | is the density of markers. In
a quantum experiment, it is impossible to accurately
determine using |J |, where this or that critical point
F is located. The function |J | does not contain exact
information on the position of these points, but we can
assume that a critical point is most likely where the
density of markers is higher. This explains why the
statistical point of view is successful at calculations
in quantum theory, but mainly for simple particles
like an electron. It also explains why the statistical
approach faces difficulties for more complex particles,
such as photons, whose structure contains several
critical points.

The second most important postulate in quantum
theory is the continuity postulate for the complete
function. From the viewpoint of (77), the continuity
postulate means continuity of the function M(e)|J |
that means that at the boundaries of the base cells,
for short, 1 and 2, which are special isosurfaces of F ,
it should hold

M(e)|J |
∣
∣
∣
1
= M(e)|J |

∣
∣
∣
2
. (78)
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Fig. 10. Changes in the cell image structure (Fig. 2) in marker space when using a single common value of Fi.

However, these relations contradict the boundary
conditions for the fundamental field of electrical
induction (35). The need to simultaneously fulfill the
relations (35) and (78) leads to the requirement that
the following conditions must hold at the boundary:

M(e)|e|
∣
∣
∣
1
= M(e)|e|

∣
∣
∣
2
. (79)

These conditions impose restrictions on the way
how markers are numbered in each cell. Assuming
that the function M(e) depends only on R = |e| =√

2|Fi −F| or is itself continuous, the condition
(79) reduces to the continuity of R = |e|. Due to
continuity of F , the continuity condition of |e| is
the requirement to choose the same value in all
topological cells for Fi:

F0 = F1 = F2 = F3 = · · · , (80)

where F0 is chosen arbitrarily. These conditions
mean that the image of the maps of almost all simple
topological cells to the corresponding sheets Ei of the
marker space will not be balls, but spherical layers
with two radii R1 < R2. For almost all nonempty
simple cells, one of the boundary spheres will be
the image of the extremum of F lying in the cell.
Figure 10 shows the changes in the structure of cell
images shown in Fig. 2 after using the condition (80).
As can be seen from the figure, as a result of the
“alignment” of values at the extrema of the cells, the
radii of their images in E3 will coincide at the borders,
regardless of the sheet Ei on which these images
are located. In this case, there are no changes in
the calculations carried out earlier. But at the same
time, there happens a general unification of the mass
calculation of particles as topological cells.

We will leave beyond the scope of this article the
task of explaining the third cornerstone, being the
most irrational postulate of quantum theory, the pro-
jection postulate [10]. The corresponding explana-
tions require an additional analysis, which lies beyond

the conceptual presentation of the proposed theory.
Note that the duality of particle structure in this the-
ory also serves as an element of explaining the geo-
metric meaning of this postulate and related problems
such as an explanation of interference experiments
with electrons and other particles.

Also, a discussion of the operator formalism of
quantum theory remains outside the scope of the ar-
ticle. This tool, making it possible to efficiently carry
out calculations in quantum theory, is a consequence
of a set of postulates, some of which have already
been discussed in this and other papers devoted to this
theory. Therefore, one can believe that this formalism
will be preserved in the new theory, may by with some
changes, as an effective calculation tool in quantum
dynamics.

15. PROBLEMS OF THE NEW THEORY

In conclusion of this paper, consider some of the
most significant problems that do not allow us to treat
this theory as an entirely complete physical theory
that explains all basic fundamental phenomena from
micro- to macrocosm. From a general analysis of the
constructions given in this paper, it follows that to
explain the properties of matter, the theory introduces
a material hypersurface V3 whose points have the
property of massiveness. This attribute of the points
of V3 actually designates its materiality. Tracking
the points of V3 is carried out, as in the theory of
continuous media, using marker fields. Using the
properties of marker fields, it is possible to describe
the properties of the structure of matter, including
its electric charge, not as a property of individual
points of V3 but as topological properties of V3. Sim-
ilarly, it appears possible to describe the baryonic
charge, based on the general Wheeler–Misner idea
of a “charge without charge” [21–23]. All charge
and gravitational properties of particles are described
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using fundamental induction and strength fields (DDD
andEEE) of both electromagnetic and gravitational fields
(ggg and ZZZ). Moreover, both these fields are actually a
manifestation of the same non-Euclidean property of
V3 and are in fact closely related to each other. The
equations of these fields are similar to those equations
of classical electrodynamics and gravitation, but de-
scribe the properties of V3 rather than independent
fields. This description implements Einstein’s idea
that fields are properties of space-time itself, but in
a way different from GR. In GR, this idea was imple-
mented only for the gravitational field.

The second element of the proposed theory is the
use of geometric averaging for an averaged descrip-
tion of particle motion, which coincides in form with
the description of quantum mechanics. In the frame-
work of such a description, there emerge averaged
equations of motion of particles as extended objects,
and the Schrödinger equation. At the same time, the
constructed particle dynamics, on the one hand, is
based on the initial assumptions of this theory, which
a basis of a topological-geometric theory of particle
structure, but, on the other hand, it contains another
set of electromagnetic fields E, H, etc., different from
the basic fields. While the fundamental fields give
an ideologically correct idea of particle structure, the
second set of fields naturally enters into the Newton
and Schrödinger equations. But this second set of
fields is connected with the basic fields only indirectly
through the marker transport field VVV. It follows from
physical considerations that there must be a direct
relationship between the fields DDD, HHH, ggg, ZZZ and the fields
of the second set AAA, E, H, U , etc. The absence of such
a connection is an essential problem of this theory.

This problem looks most significant for the gravi-
tational field. In the experiment, the gravitational field
manifests itself in as the existence of a free-fall accel-
eration at every point in space. This means that the
field ggg together with the field ZZZ should appear in the
equations of averaged motion. However, in Eqs. (74)
there is only one scalar functionU for connection with
the gravitational field, and it is not directly related to
the fields ggg and DDD.

A way to overcome this difficulty has not yet been
found, but a direction in which, apparently, it is pos-
sible to find a solution to the problem, was briefly
described in [6]. The meaning of the approach, which
will presumably make it possible to close the theory in
this part, can be described as follows. As mentioned
at the beginning of this paper, the hyperplane P3 ∈
W4 is a mathematical implementation of a reference
frame. Such a frame can be distinguished by av-
eraging V3 with the same geometric density as the

u = F(x, y)

u' = F'(x', y')
V1

1

2

P3

P3
V3

V2

Fig. 11. “Proper” hyperplanes P3
1 and P3

2 for two topo-
logical cells.

Newtonian equations. Indeed, averaging Eq. (1) with
the density M(e)|J | and using (29), we find:

wMi = FiMi +m0
ε

2

∫

Vi

|e|2M(e)|J |dV.

From here we find that the equation of the averaged
hypersurface has the form

w = Fi +
m0

Mi
R. (81)

In this theory, any integral of the form

I =

∫

Vi

I(e)M(e)|J |dV

is a conserved quantity, dI/dt = 0. This follows
from the fact that e, by definition, obeys the marker
transport equations. Hence, the averaged hyperplane
in W4 is specified by Eq. (81): w = const. Thus,
the hyperplane P3 is distinguished for each individ-
ual particle, which belongs to common numbering
of markers in a given region of space. However,
in reality, matching the marker numbering in differ-
ent parts of space is a definite problem. Figure 11
presents a two-dimensional illustration of how, in
reality, different marker numberings can determine
different hyperplanes P3 that are not parallel to each
other.

A general approach to explaining the emergence
of the fundamental forces associated with DDD, ggg, etc.,
in the equations of motion reduces, apparently, to
taking into account, both in the averaged Newton
equations and the Schrödinger equation, the changes
in the “proper” hyperplane P3 of a particle due to its
motion. The result of such a modification should be
generalizations of the dynamic equations of a self-
gravitating medium (2)–(4), from which we started
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the presentation of the basic concepts of this the-
ory. However, the description and analysis of this
approach go beyond the scope of this article.

One more problem of the proposed theory, to be
discussed here, is the problem of geometrodynamics.
The meaning of this problem, which was discussed
previously in [5–7], is that most of the relations that
form the basis of the proposed theory are mathemati-
cal identities connecting various properties of marker
fields and transfer fields. This means that almost all
equations of the theory are determined by the proper-
ties of a single function F(x, t), for which, however,
there is no separate dynamic equation in the theory.
This means that all constructions are valid for any
smooth function F . But in nature, only one possible
form of F is realized. It follows that for the funda-
mental potential in theory there must be a separate
equation reflecting the physical essence of a specific
implementation of the hypersurface V3 in W4. This
physical essence of V3, of which we are a part, is not
yet available for research in an experiment. Therefore,
one can only put forward various hypotheses on the
nature of V3.

For example, the hypersurface can be an analogue
of the boundary of two media filling W4 or some part
of it. Another hypothesis may be the assumption that
V3 is a three-dimensional “membrane,” itself con-
sisting of particles of some supermatter. A common
feature of these hypotheses is that the description of
V3 must be constructed using markers numbering
the points of this hypersurface. In this case, we can
suppose that for the dynamics of V3, as an element of
W4, it is possible to write down more general marker
transport equations not along P3, but in the entire
space. The general idea of this approach was outlined
in [5–7] and in the recent paper [9].

The general result of the constructions carried out
in these papers is that the dynamics equation for F
can be reduced, under sufficiently general considera-
tions, to the form

∇F − ∂

∂t

(
1

c2(F)

∂

∂t

)

F = P (F), (82)

in which the functions c(F) and P (F) require an
experimental justification. The form of equation itself
coincides with that of the generalized equation for
vibrations of an infinitely thin 3D elastic inhomo-
geneous membrane in 4D space. In this case, the
function c(F) is an analogue of the local velocity of
elastic waves of the membrane, and P (F) is the nor-
mal pressure on the membrane from external forces.
This description scheme fits both the hypothesis of
the membrane itself and the hypothesis of a boundary
of two media. Perhaps more complete information on

the nature of the dynamics of V3 will be brought by a
solution of the first of the problems outlined here.

Appendix A

From the general definition of an inverse matrix
one can obtain the following set of identities that can
be used while deriving the induction equation for the
field KKK:

∂xα

∂ea
∂ea

∂xβ
= δαβ ,

∂xα

∂ea
∂eb

∂xα
= δba,

∂xα

∂ea
=

1

|J |εabcε
αβγ ∂eb

∂xβ
∂ec

∂xγ

=
1

|J |εabc[∇eb ×∇ec]α. (A.1)

Using the fact that J is the determinant of the Jacobi
matrix (8), we arrive at one more identity:

εabc[∇eb ×∇ec]
∂ea

∂xβ
= J

∂xα

∂ea
∂ea

∂xβ
= Jδαβ . (A.2)

From the well-known properties of the Levi-Civita
antisymmetric symbol we have the following identity
for an arbitrary antisymmetric matrix with the ele-
ments λαβ :

εαβγεγμνλαβ = det

∣
∣
∣
∣
∣
∣
∣
∣
∣

δαγ δβγ δγγ

δαμ δβμ δγμ

δαν δβν δγν

∣
∣
∣
∣
∣
∣
∣
∣
∣

λαβ

= λαβ

(
δαμδ

β
ν − δαν δ

β
μ

)
= 2λμν . (A.3)

A result of the last identity is the relation

εαβγλαβ = εαβγεabce
a ∂e

b

∂xα
∂ec

∂xβ
= Kγ . (A.4)

Appendix B

Using (7), we can write:
∫

Vi

xα
∂

∂t

(
M(e)|J |

)
dV

= −
∫

Vi

xα
∂

∂xβ

(
VβM(e)|J |

)
dV.

To calculate the r.h.s. of the latter relation, we will
use the Ostrogradsky-Gauss theorem. As a result,
we find ∫

Vi

xα
∂

∂xβ

(
VβM(e)|J |

)
dV
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= −
∫

Vi

VαM(e)|J |dV +

∮

∂Vi

M(e)|J |xαVβdσβ

= −
∫

Vi

VαM(e)|J |dV +

∮

∂Vi

M(e)|J |xαVβdσβ.

For the second time derivative of the average coordi-
nate we have:

d2Xα
i

dt2

=

∫

Vi

(
∂V α

∂t
M(e)|J | + V α ∂

∂t

(
M(e)|J |

))

dV

+

∮

∂Vi

M(e)|J |V αvβdσβ,

where vβ are velocity components of moving bound-
ary points. By analogy, we have

∫

Vi

V α ∂

∂t

(
M(e)|J |

)
dV

= −
∫

Vi

∂V α

∂xβ
VβM(e)|J |dV

+

∮

∂Vi

M(e)|J |VαVβdσβ .

Substituting the latter relation to the expression for
the second derivative of Xα

i , we finally find

d2Xα
i

dt2
=

∫

Vi

(
∂

∂t
Vα + Vβ ∂

∂xβ
Vα

)

|J |dV

+

∮

∂Vi

M(e)|J |Vα
(
vβ − Vβ

)
dσβ.

The following identity is often used in hydrody-
namics [31]:

∂

∂t
Vα + Vβ ∂

∂xβ
Vα

=
∂

∂t
Vα + [curl VVV ×VVV]α +

∂

∂xα
|VVV|2.

Substituting Eq. (68) to this identity, we arrive at
Eq. (69).

FUNDING

The work has been carried out in the framework
of Project 0777-2020-0018, funded from the funds of
the state assignment to the winners of the competi-
tion of scientific laboratories of institutions of higher
education subordinated to the Ministry of Education
and Science of Russia, and partly within the RFBR
project 20-02-00280.

CONFLICT OF INTEREST

The author declares that he has no conflicts of
interest.

REFERENCES
1. V. M. Zhuravlev, “A topological interpretation of

quantum theory and elementary particle structure,”
Grav. Cosmol. 17, 201–217 (2011).

2. V. M. Zhuravlev, “Geometry, topology, and physical
fields (Part I),” Space, Time, and Fundamental Inter-
actions, No. 4, 6–24 (2014).

3. V. M. Zhuravlev, “Geometry, topology, and physical
fields (Part II). Mass and gravitation,” Space, Time
and Fundamental Interactions, No. 4, 25–39 (2014).

4. V. M. Zhuravlev, “Geometry, topology, and physical
fields (Part III). Equation of induction of fundamental
fields,” Space, Time, and Fundamental Interactions,
No. 3, 44–60 (2015)

5. V. M. Zhuravlev, “Geometry, topology, and physical
fields (Part IV). Topological structure of elementary
particles,” Space, Time, and Fundamental Interac-
tions, No. 4, 104–118 (2015)

6. V. M. Zhuravlev, “Matter and geometry. GR and be-
yond...,” Space, Time, and Fundamental Interactions,
No. 2, 5–26 (2016).

7. V. M. Zhuravlev, “Induction equations for fundamen-
tal fields and dark matter,” Grav. Cosmol. 23, 95–104
(2017),

8. V. M. Zhuravlev, “The principle of materiality of space
and the theory of fundamental fields,” Space, Time,
and Fundamental Interactions, No. 3, 37–57 (2020).

9. V. M. Zhuravlev, “The principle of materiality of space
and the theory of fundamental fields,” J. Phys. Conf.
Ser. 2081, 012038 (2021).

10. A. Sadbery, Quantum Mechanics and the Particles
of Nature (Cambridge University Press, Cambridge
(UK), 1986).

11. V. A. Fok, Theory of Space, Time and Gravity
(Moscow, Nauka, 1955).

12. L. Brillouin. Relativity Reexamined (New York,
Academic Press, 1970)

13. W. K. Clifford, “On the space theory of matter in
mathematical papers,” in Albert Einstein and The-
ory of Gravitation (Moscow, Mir, 1979), pp. 36–37.

14. Ya. B. Zeldovich and I. D. Novikov, Theory of Gravity
and Evolution of Stars (Moscow, Nauka, 1971).

15. V. S. Vladimirov Generalized Functions in Mathe-
matical Physics (Moscow, Nauka, 1979).

16. M. M. Postnikov, Introduction in Morse Theory
(Moscow, Nauka, 1971).

17. V. M. Zhuravlev, “Electrodynamics with integer
charges and topology,” in Gravitation and Elec-
tromagnetizm: Proc. Conf, (Minsk, BGU, 1998),
pp. 42–50.

18. V. M. Zhuravlev, “Electrodynamics with integer
charges and topology,” Russian Phys. J. No. 2, 134–
140 (2000).

19. S. Sternberg, Lectures on Differential Geometry.
Prentice Hall (Euglewood Ckiffs, N.J., 1964)

GRAVITATION AND COSMOLOGY Vol. 28 No. 4 2022



MATTER AND SPACE. NEW THEORY 341

20. M. Hirsh, Differential Topology, (Moscow, Mir,
1979).

21. C. W. Misner and J. A. Wheeler, Ann. Phys. (USA) 2,
527–537 (1957).

22. J. A. Wheeler, Neutrinos, Gravitation and Geome-
try (Tipographia Compositori, 1960).

23. Ch. Misner and J. A. Wheeler, “Classiacal physics as
geometry,” in Albert Einstein and Theory of Gravi-
tation (Moscow, Mir, 1979), pp. 542–554.

24. V. A. Dubrovin, S. P. Novikov, and A. T. Fomenko,
Modern Geometry. Homology Theory Methods
(Moscow, Nauka, 1984);
V. A. Dubrovin, S. P. Novikov, and A. T. Fomenko,
Modern Geometry. Methods and Applications’
(Moscow, Nauka, 1979).

25. J. W. Milnor, Topology from the Differentiable
Viewpoint (Princeton Univ., based on notes by David
W. Weaver, Univ. of Virginia, Charlottesville, 1965);
A. H. Wallace, Differential Topology. First Steps

(Univ. of Pennsylvania, W. A. Benjamin, New York-
Amsterdam, 1968).

26. I. S. Shapiro and M. A. Olshanetskiy, “’Topology for
physicists,” in Elementary Particles (Sixth ITEP
school, 1979), pp. 5–60.

27. N. N. Saveliev, Lectures on the Topology of Three-
Dimensional Manifolds. Introduction to the Cas-
son Invariant (Moscow, MCNMO, 2004).

28. J.J. Kokkedee, The Quark Model (University of Ni-
jmegon, The Netherlands, W.A. Benjamin, Inc., New
York, Amsterdam, 1969).

29. L. D. Landau and E. M. Lifshitz, Quantum Mechan-
ics. Nonrelativistic Theory (Moscow, Nauka, 1989).

30. E. Madelung, “Quantentheorie in hydrodynamischer
Form,” Z. Physik 40, 322–326 (1926).

31. L. D. Landau and E. M. Lifshitz, Hydrodynamics
(Moscow, Nauka, 1989).

GRAVITATION AND COSMOLOGY Vol. 28 No. 4 2022


